1. Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses.
- Author
-
Kumar, Vijay, Kashyap, Prakriti, Kumar, Subhash, Thakur, Vikas, Kumar, Sanjay, and Singh, Dharam
- Subjects
ANTIFREEZE proteins ,PROTEOMICS ,GLACIAL lakes ,NUCLEOTIDE sequencing ,CHROMATOPHORES ,PHYSIOLOGICAL effects of cold temperatures ,METAGENOMICS ,MOLECULAR chaperones - Abstract
Bacterial adaption to the multiple stressed environments of high-altitude niches in the Himalayas is intriguing and is of considerable interest to biotechnologists. Previously, we studied the culturable and unculturable metagenome microbial diversity from glacial and kettle lakes in the Western Himalayas. In this study, we explored the adaptive strategies of a unique Himalayan eurypsychrophile Iodobacter sp. PCH194, which can synthesize polyhydroxybutyrate (PHB) and violacein pigment. Whole-genome sequencing and analysis of Iodobacter sp. PCH194 (4.58Mb chromosome and three plasmids) revealed genetic traits associated with adaptive strategies for cold/freeze, nutritional fluctuation, defense against UV, acidic pH, and the kettle lake's competitive environment. Differential proteome analysis suggested the adaptive role of chaperones, ribonucleases, secretion systems, and antifreeze proteins under cold stress. Antifreeze activity inhibiting the ice recrystallization at -9°C demonstrated the bacterium's survival at subzero temperature. The bacterium stores carbon in the form of PHB under stress conditions responding to nutritional fluctuations. However, violacein pigment protects the cells from UV radiation. Concisely, genomic, proteomic, and physiological studies revealed the multiple adaptive strategies of Himalayan Iodobacter to survive the high-altitude stresses. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF