1. QM/MM Study of the H2 Formation on the Surface of a Water Ice Grain Doped With Formaldehyde: Molecular Dynamics and Reaction Kinetics
- Author
-
Boutheïna Kerkeni, Malek Boukallaba, Mariem Hechmi, Denis Duflot, Céline Toubin, Institut Supérieur des Arts Multimédia de la Manouba (ISAMM), Université de la Manouba [Tunisie] (UMA), Laboratoire de Physique de la matière Condensée [Tunis] (LPMC), Université de Tunis El Manar (UTM)-Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis (FST), Université de Tunis El Manar (UTM), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Physico-Chimie Moléculaire Théorique (PCMT), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), PCMI (Programme National de Physique et Chimie du Milieu Interstellaire), Centre de Ressources Informatiques (CRI) of the Université of Lille for providing computing time, Région Hauts de France, the Ministre de l’Enseignement Supérieur et de la Recherche (CPER Climibio) and the European Fund for Regional Economic Development for their support, This work used HPC resources from GENCI-TGCC (Grant No. 2020–A0050801859), ANR-11-LABX-0005,Cappa,Physiques et Chimie de l'Environnement Atmosphérique(2011), and ANR-16-IDEX-0004,ULNE,ULNE(2016)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Astronomy and Astrophysics ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
Formaldehyde has been widely observed in the icy mantle of interstellar grains. H2CO may be formed from successive hydrogenations of CO and may further contribute to the chemical complexity of the Interstellar medium (ISM) participating to heterogeneous reactions with colliding gas phase atoms. Within this context, Eley-Rideal and Langmuir-Hinshelwood rate constants of H2 formation on a formaldehyde doped amorphous water ice grain model of the ISM, were computed over a wide temperature range [15–2000 K]. We used classical molecular dynamics (MD) simulations to build the model of the H2CO doped ice surface. Then we studied theoretically by means of hybrid QM/MM ab initio and molecular mechanics methodology (ONIOM) H atoms abstraction from formaldehyde molecules and the H2 formation. Specifically, we investigate the reactivity of the gas phase H atom toward one formaldehyde molecule lying at one of the slab surfaces. The reaction path and the energetics are predicted, the mechanism is found to be exothermic by 14.89 kcal/mol and the barrier is 6.75 kcal/mol at the QM level CBS/DLPNO-CCSD(T)//ONIOM/aug-cc-pVTZ. We employ two approaches that take into account tunnelling and non-classical reflection effects by means of the Zero Curvature Tunnelling (ZCT), and the Small Curvature Tunnelling (SCT) which all provided comparable results to predict the kinetics of the reaction path. The rate constants show important quantum tunnelling effects at low temperatures when compared to rates obtained from the purely classical transition-state theory (TST) and from the canonical variational transition state theory (CVT). Corner cutting effects are highlighted in the SCT calculations by 4 to 5 orders of magnitude with respect to ZCT rate constants at low temperatures.
- Published
- 2022
- Full Text
- View/download PDF