3 results on '"Hong JL"'
Search Results
2. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine.
- Author
-
Huang ZR, Guo WL, Zhou WB, Li L, Xu JX, Hong JL, Liu HP, Zeng F, Bai WD, Liu B, Ni L, Rao PF, and Lv XC
- Subjects
- Bacteria classification, Bacteria genetics, Bacteria metabolism, Biodiversity, Fungi classification, Fungi genetics, Fungi metabolism, High-Throughput Screening Assays, Mycobiome, Fermentation, Microbiota, Oryza metabolism, Volatile Organic Compounds analysis, Wine analysis, Wine microbiology
- Abstract
Hong Qu glutinous rice wine (HQGRW), as one of the most typical representatives of Chinese rice wine, is generally brewed from glutinous rice by adding two traditional wine fermentation starters-Hong Qu (HQ) and Bai Qu (BQ). The objective of this study was to determine the microbial communities and volatile metabolites of different traditional fermentation starters for HQGRW, and elucidate the potential correlation between microbiota and volatile metabolites. Both heatmap and principal component analysis (PCA) revealed the significant variances in volatile profiles among different wine starters. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that both of bacterial and fungal communities varied significantly in different starters. HQ was dominated mainly by bacteria of Bacillus ginsengihumi (20.17%), Pantoea sp. (10.39%), Elizabethkingia sp. (5.52%), Streptococcus sp. (5.03%) Brevundimonas sp. (3.03%), Rickettsia prowazekii (2.94%), Thermus thermophilus (2.54%), Bacillus amyloliquefaciens (1.48%), Bacillus aryabhattai (1.42%); fungi of Monascus purpureus (39.7%), Aspergillus niger (27.35%), Xeromyces bisporus (8.39%), Aspergillus penicillioides (6.89%), Aspergillus flavus (2.33%) and Pichia farinose (0.79%). By contrast, BQ contained much higher proportions of bacteria of Lactococcus lactis (10.45%), Lactobacillus brevis (9.99%), Pediococcus pentosaceus (8.29%), Weissella paramesenteroides (6.69%), Lactobacillus fermentum (4.83%), Gluconobacter thailandicus (3.93%), Lactobacillus alimentarius (3.59%), fungi of Rhizopus arrhizus (31.47%), Saccharomycopsis fibuligera (27.86%), Aspergillus niger (20.81%), Issatchenkia orientalis (3.79%), Saccharomycopsis malanga (3.15%), Clavispora lusitaniae (2.29%), Candida tropicalis (1.47%), Saccharomyces cerevisiae (1.11%) and Rhizopus microsporus (0.57%). Furthermore, core functional microbiota that might contribute to volatile flavour development was explored through Spearman's correlation-based network analysis. Lactobacillus brevis, Lactobacillus alimentarius, Lactobacillus plantarum and Aspergillus niger were found to be strongly associated with acid compounds (FDR adjusted P < 0.01), while Pichia sp., Candida sp., Monascus purpureus, Lactobacillus brevis and Lactobacillus alimentarius were positively correlated with concentrations of aromatic esters associated with fruity and floral notes (FDR adjusted P < 0.01), implying that these microorganisms might make significant contributions to the flavour of rice wine. These findings demonstrated that the aromatic quality of HQGRW may be critically influenced by the microbiota in traditional fermentation starters. To conclude, this study would contribute to the development of novel defined starter cultures for improving the aromatic quality of HQGRW., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
3. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.
- Author
-
Huang ZR, Zhou WB, Yang XL, Tong AJ, Hong JL, Guo WL, Li TT, Jia RB, Pan YY, Lin J, Lv XC, and Liu B
- Subjects
- Benzofurans, Benzopyrans, Chromatography, High Pressure Liquid, Gene Expression Regulation, Fungal, Heterocyclic Compounds, 3-Ring, Monascus genetics, Pigments, Biological genetics, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Solubility, Tandem Mass Spectrometry, Transcription, Genetic, Food Microbiology methods, Gene Expression Profiling methods, Glycerol metabolism, Monascus metabolism, Pigments, Biological biosynthesis, Proteomics methods, Starch metabolism, Transcriptome
- Abstract
Monascus spp. have been used for thousands of years as a traditional food additive in China. This mold can produce many different types of commercially valuable secondary metabolites of biological activity. Soluble starch and glycerol are the two principal carbon sources universally utilized by Monascus for the production of beneficial metabolites. In this study, the effects and regulation mechanisms of soluble starch and glycerol for M. purpureus FAFU618 on Monascus azaphilone pigments (MonAzPs) were investigated through ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS), comparative proteomics and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). The production of intracellular and extracellular pigments was significantly different between the soluble starch group (SSG) and glycerol group (GCG). Additionally, the components of intracellular pigments revealed by UPLC-QTOF-MS/MS showed that Monascin and Ankaflavin increased significantly in the GCG, while Rubropunctatin and Monascorubrin increased in the SSG. Differentially expressed proteins of mycelia between SSG and GCG were analyzed by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS. We identified 27 proteins with statistically altered expression, of which 18 proteins associated with the EMP (glycolytic pathway), translation, energy generation, proteolysis, etc. were up-regulated, and 9 proteins, including ribosomal proteins, heat shock proteins (HSPs) and others, were down-regulated in GCG. Meanwhile, the expression levels of MonAzP biosynthetic genes were also analyzed by RT-qPCR, and the results showed that mppA, mppC, mppR1 and mppR2 were down-regulated, whereas genes MpPKS5, MpFasA2, MpFasB2, mppB, mppD and mppE were up-regulated. Collectively, these findings illustrate that the regulation of MonAzPs is not only closely related to the expression levels of certain proteins in the polyketide synthesis pathway but also closely related to the concentration of primary metabolism-generated molecules that are used as substrates for polyketide synthesis. The present study provides insights into the regulation of different carbon sources on the metabolism of MonAzPs in M. purpureus FAFU618. These results may promote further development of functional foods or medicines from Monascus spp. fermented products., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.