In this study, a study was conducted with the HAM10000 dataset containing skin lesions to see the performance of architectures such as EfficienNetB3, which uses deep learning techniques to detect skin cancer. In this study, applications were made in deep learning to see the effect of the learning rate or learning rate on architectures using convolutional neural networks used in image classification. These applications were made to see the effect of the learning rate, the size and diversity of the data set, and the number of images used in training, as well as the increased number of images, on both the success in classification and the time taken for training. EfficientNetB3 was used as the architecture and HAM1000 dataset, which is open access on the Kaggle platform, was used as the dataset. At the end of the study, without using as many augmented images as possible and with 600 images of each disease class, a learning rate of 0.002 and epoch 15 instead of 10, the highest accuracy performance of 0.8234 was achieved in the fifth application. [ABSTRACT FROM AUTHOR]