1. Structure-function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis
- Author
-
Yana Y. Toporkova, Valeria S. Ermilova, E. V. Osipova, Alexander N. Grechkin, Yuri Gogolev, Svetlana S. Gorina, and Lucia S. Mukhtarova
- Subjects
Protein Conformation ,Mutant ,Molecular Sequence Data ,Biophysics ,Allene oxide synthase ,Cytochrome P450 ,Ether ,Isomerase ,Biochemistry ,Gas Chromatography-Mass Spectrometry ,chemistry.chemical_compound ,Structure-Activity Relationship ,Cytochrome P-450 Enzyme System ,Structural Biology ,Flax ,Tobacco ,Genetics ,Point Mutation ,Amino Acid Sequence ,Site-directed mutagenesis ,Molecular Biology ,Plant Proteins ,chemistry.chemical_classification ,CYP74 family ,ATP synthase ,biology ,Sequence Homology, Amino Acid ,Wild type ,Computational Biology ,Cell Biology ,Recombinant Proteins ,Intramolecular Oxidoreductases ,Enzyme ,chemistry ,biology.protein ,Mutagenesis, Site-Directed ,Divinyl ether synthase - Abstract
Non-classical P450s of CYP74 family control several enzymatic conversions of fatty acid hydroperoxides to bioactive oxylipins in plants, some invertebrates and bacteria. The family includes two dehydrases, namely allene oxide synthase (AOS) and divinyl ether synthase (DES), and two isomerases, hydroperoxide lyase (HPL) and epoxyalcohol synthase. To study the interconversion of different CYP74 enzymes, we prepared the mutant forms V379F and E292G of tobacco (CYP74D3) and flax (CYP74B16) divinyl ether synthases (DESs), respectively. In contrast to the wild type (WT) enzymes, both mutant forms lacked DES activity. Instead, they produced the typical AOS products, α-ketols and (in the case of the flax DES mutant) 12-oxo-10,15-phytodienoic acid. This is the first demonstration of DES into AOS conversions caused by single point mutations.
- Published
- 2013