Background: Modern living is awash with low-frequency electromagnetic radiation raising concern over health effects, birth defects, and infant cancers especially leukemias. Medical/scientific opinion is ambivalent, especially regarding possible mechanisms of action despite our bodies׳ many electric currents., Aims: Are some cancers induced by morphogenetic changes rather than direct mutation? We wished to see if morphogenetic effects of weak, extremely low-frequency electric (ELF) fields in embryonated hen׳s eggs could induce cancers, knowing that such treatment is usually deleterious. We report a pilot study intended to reveal a promising cell source in which to search for cancer cells by established methods and then to check for DNA damage., Methods: Stored (5°C for 1-36 days) fresh, fertile hens׳ eggs were incubated (38°C, total five or six days) in presence or absence of a weak ELF oscillating electric field (1-40V/cm, 1-50Hz and two to six days). Separated embryos were assessed for development stage., Results: Storage of untreated eggs (>12 days, 5°C) allows a steady loss of normal embryo formation at 38°C (few viable by 25 days, half-life ~18 days). Surprisingly, incubation in a weak ELF field during the period of declining viability significantly (P: 0.03-0.0001) improved viability and condition of the embryos (new half-life ~21 days), rather than the expected converse. Thus for a few days, the field could keep viable some embryos that would otherwise not have survived., Conclusions: The rescued embryos and their untreated controls seem the most promising place to seek any carcinogenic effects of ELF fields. The nature of the presumed critical component keeping them viable during 5°C storage is at least of equal interest., (Copyright © 2016 Elsevier Inc. All rights reserved.)