1. HIERARCHICAL ANALYSIS OF INBREEDING DEPRESSION IN PEROMYSCUS POLIONOTUS.
- Author
-
Lacy RC, Alaks G, and Walsh A
- Abstract
The severity of inbreeding depression appears to vary among taxa, but few ecological or other patterns have been identified that predict accurately which taxa are most sensitive to inbreeding. To examine the causes of heterogeneity in inbreeding depression, the effects of inbreeding on reproduction, survival, and growth were measured in three replicate experimental stocks for each of three subspecies of Peromyscus polionotus mice. Inbreeding of the dam reduced the probability of breeding, the probability of producing a second litter, and litter size. Inbreeding of the litter caused depression of litter size, juvenile viability, and mass at weaning, and caused an increase in the within-litter variance in mass. In spite of differences between the subspecies in natural population sizes, genetic variation, and mean rates of reproduction and survival, all variation observed between experimental populations in their responses to inbreeding could be attributed to random founder effects. The genetic load of deleterious alleles in each replicate was unequally partitioned among its founder pairs, and different founders contributed to the load affecting different fitness components. Thus, inbreeding depression for any one fitness component, in our experimental environment, must be due to relatively few deleterious alleles with major effects. Genetic loads so comprised would be expected to diverge among natural populations due to both random drift and selective removal of recessive deleterious alleles during population bottlenecks. The near universality of inbreeding depression would be maintained, however, if different alleles contribute to inbreeding depression of different fitness components and in different environments., (© 1996 The Society for the Study of Evolution.)
- Published
- 1996
- Full Text
- View/download PDF