1. Detection of gadolinium deposition in cortical bone with ultrashort echo time T1 mapping: an ex vivo study in a rabbit model
- Author
-
Xiaodong Zhang, Kaixuan Zhao, Jiang Du, Yanqiu Feng, Qianjin Feng, Shisi Li, Cuiling Zhu, Peiwei Yi, Yihao Guo, and Qinqin Yu
- Subjects
Relaxometry ,medicine.medical_specialty ,Gadolinium ,medicine.medical_treatment ,chemistry.chemical_element ,030218 nuclear medicine & medical imaging ,Gadobutrol ,03 medical and health sciences ,0302 clinical medicine ,Flip angle ,medicine ,Radiology, Nuclear Medicine and imaging ,Saline ,medicine.diagnostic_test ,business.industry ,Ultrasound ,Magnetic resonance imaging ,General Medicine ,medicine.anatomical_structure ,chemistry ,030220 oncology & carcinogenesis ,Cortical bone ,Radiology ,Nuclear medicine ,business ,medicine.drug - Abstract
To investigate the capacity of ultrashort echo time (UTE) T1 mapping to non-invasively assess gadolinium deposition in cortical bone after gadolinium-based contrast agent (GBCA) administration. Twenty-eight New Zealand rabbits (male, 3.0–3.5 kg) were randomly allocated into control, macrocyclic, high-dose macrocyclic, and linear GBCA groups (n = 7 for each group), and respectively given daily doses of 0.9 ml/kg bodyweight saline, 0.3 mmol/kg bodyweight gadobutrol, 0.9 mmol/kg bodyweight gadobutrol, and 0.3 mmol/kg bodyweight gadopentetate dimeglumine for five consecutive days per week over a period of 4 weeks. After a subsequent 4 weeks of recovery, the rabbits were sacrificed and their tibiae harvested. T1 value of cortical bone was measured using a combination of UTE actual flip angle imaging and variable repetition time on a 7T animal scanner. Gadolinium concentration in cortical bone was measured using inductively coupled plasma mass spectrometry (ICP-MS). Pearson’s correlation between R1 value (R1 = 1/T1) and gadolinium concentration in cortical bone was assessed. Bone T1 values were significantly lower in the lower-dose macrocyclic (329.2 ± 21.0 ms, p < 0.05), higher-dose macrocyclic (316.8 ± 21.7 ms, p < 0.01), and linear (296.8 ± 24.1 ms, p < 0.001) GBCA groups compared with the control group (356.3 ± 19.4 ms). Gadolinium concentrations measured by ICP-MS in the control, lower-dose macrocyclic, higher-dose macrocyclic, and linear GBCA groups were 0.04 ± 0.02 μg/g, 2.60 ± 0.48 μg/g, 4.95 ± 1.17 μg/g, and 13.62 ± 1.55 μg/g, respectively. There was a strong positive correlation between R1 values and gadolinium concentrations in cortical bone (r = 0.73, p < 0.001). These results suggest that UTE T1 mapping has the potential to provide a non-invasive assessment of gadolinium deposition in cortical bone following GBCA administration. • Changes in T 1 value related to gadolinium deposition were found in bone after both linear and macrocyclic GBCA administrations. • R 1 relaxometry correlates strongly with gadolinium concentration in cortical bone. • UTE T 1 mapping provides a potential tool for non-invasively monitoring gadolinium deposition in cortical bone.
- Published
- 2020
- Full Text
- View/download PDF