1. Excitatory actions of substance P in the rat lateral posterior nucleus.
- Author
-
Paul, Kush and Cox, Charles L.
- Subjects
- *
BRAIN stem , *NEURONS , *TACHYKININS , *VISUAL cortex , *NEOCORTEX - Abstract
The lateral posterior nucleus (LP) receives inputs from both neocortex and superior colliculus (SC), and is involved with integration and processing of higher-level visual information. Relay neurons in LP contain tachykinin receptors and are innervated by substance P (SP)-containing SC neurons and by layer V neurons of the visual cortex. In this study, we investigated the actions of SP on LP relay neurons using whole-cell recording techniques. SP produced a graded depolarizing response in LP neurons along the rostro-caudal extent of the lateral subdivision of LP nuclei (LPl), with a significantly larger response in rostral LPl neurons compared with caudal LPl neurons. In rostral LPl, SP (5–2000 nm) depolarized nearly all relay neurons tested (> 98%) in a concentration-dependent manner. Voltage-clamp experiments revealed that SP produced an inward current associated with a decreased conductance. The inward current was mediated primarily by neurokinin receptor (NK)1 tachykinin receptors, although significantly smaller inward currents were produced by specific NK2 and NK3 receptor agonists. The selective NK1 receptor antagonist RP67580 attenuated the SP-mediated response by 71.5% and was significantly larger than the attenuation of the SP response obtained by NK2 and NK3 receptor antagonists, GR159897 and SB222200, respectively. The SP-mediated response showed voltage characteristics consistent with a K+ conductance, and was attenuated by Cs+, a K+ channel blocker. Our data suggest that SP may modulate visual information that is being processed and integrated in the LPl with inputs from collicular sources. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF