1. Engineering a disulfide bond and free thiols in the lantibiotic nisin Z
- Author
-
Cindy van Kraaij, Roger S. Bongers, Harry S. Rollema, Oscar P. Kuipers, Eefjan Breukink, Hans A. Kosters, and Ben de Kruijff
- Subjects
chemistry.chemical_classification ,Stereochemistry ,Peptide ,Lantibiotics ,Biochemistry ,chemistry.chemical_compound ,Residue (chemistry) ,chemistry ,Iodoacetamide ,Peptide sequence ,Nisin ,Lanthionine ,Cysteine - Abstract
The antimicrobial peptide nisin contains the uncommon amino acid residues lanthionine and methyl-lanthionine, which are post-translationally formed from Ser, Thr and Cys residues. To investigate the importance of these uncommon residues for nisin activity, a mutant was designed in which Thr13 was replaced by a Cys residue, which prevents the formation of the thioether bond of ring C. Instead, Cys13 couples with Cys19 via an intramolecular disulfide bridge, a bond that is very unusual in lantibiotics. NMR analysis of this mutant showed a structure very similar to that of wild-type nisin, except for the configuration of ring C. The modification was accompanied by a dramatic reduction in antimicrobial activity to less than 1% of wild-type activity, indicating that the lanthionine of ring C is very important for this activity. The nisin Z mutants S5C and M17C were also isolated and characterized; they are the first lantibiotics known that contain an additional Cys residue that is not involved in bridge formation but is present as a free thiol. Secretion of these peptides by the lactococcal producer cells, as well as their antimicrobial activity, was found to be strongly dependent on a reducing environment. Their ability to permeabilize lipid vesicles was not thiol-dependent. Labeling of M17C nisin Z with iodoacetamide abolished the thiol-dependence of the peptide. These results show that the presence of a reactive Cys residue in nisin has a strong effect on the antimicrobial properties of the peptide, which is probably the result of interaction of these residues with thiol groups on the outside of bacterial cells.
- Published
- 2000
- Full Text
- View/download PDF