1. Lateral mobility of phospholipid molecules in thin liquid films.
- Author
-
Lalchev, Z., Todorov, R., Ishida, H., and Nakazawa, H.
- Abstract
The Fluorescence Recovery After Photobleaching (FRAP) method was applied to measure the lateral mobility of the fluorescent lipid analog, dioctadecylindocarbocyanine perchlorate (Dil-C18), in microscopic thin liquid films (Foam Films (FFs)). The foam film structures were comprised of two phosphatidylcholine monolayers adsorbed at air/water interfaces which sandwiched a thin liquid core. Lateral diffusion of the DiI molecules in the plane of the monolayers was determined as a function of the thickness of the thin liquid core of the film between the FF monolayers. The results obtained indicated that the diffusion coefficient was strongly dependent both on the distance between the FF monolayers in the range 4 nm to 85 nm (corresponding to the FF thickness) and on the film type. The applicability of the FRAP method for studying the molecular mobility in phospholipid FFs was demonstrated. Considerable differences in the surface diffusion coefficient of Dil were observed, ranging between 2 × 10 cm/s and 22 × 10 cm/s in so called yellow, gray, common black and Newton black FFs. The effect of the presence of polyethylene glycol (PEG-400) in the liquid core of lecithin FFs on surface diffusion was also studied. The surface diffusion results from the FF studies were compared with data from black lipid membranes (BLMs). These structures are related in thickness terms but the molecular orientation in FFs is the reverse of that in BLMs. [ABSTRACT FROM AUTHOR]
- Published
- 1995
- Full Text
- View/download PDF