1. Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling
- Author
-
Hermann Edlbauer, Junliang Wang, Thierry Crozes, Pierre Perrier, Seddik Ouacel, Clément Geffroy, Giorgos Georgiou, Eleni Chatzikyriakou, Antonio Lacerda-Santos, Xavier Waintal, D. Christian Glattli, Preden Roulleau, Jayshankar Nath, Masaya Kataoka, Janine Splettstoesser, Matteo Acciai, Maria Cecilia da Silva Figueira, Kemal Öztas, Alex Trellakis, Thomas Grange, Oleg M. Yevtushenko, Stefan Birner, Christopher Bäuerle, Circuits électroniques quantiques Alpes (NEEL - QuantECA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Nanofabrication (NEEL - Nanofab), Ingénierie Expérimentale (NEEL - ExpE), Laboratory of Quantum Theory (GT), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Université Paris-Saclay, National Physical Laboratory [Teddington] (NPL), Chalmers University of Technology [Göteborg], Nextnano GmbH, Nextnano Lab, ANR-16-CE30-0015,FullyQuantum,Manipulation tout-quantique de pulses de charges entières et non-entières dans des fils quantiques(2016), and ANR-19-CE47-0005,STEPforQubits,Short TeraHertz electrical pulses for the generation of flying Qubits(2019)
- Subjects
electron ,engineering ,GaAs/AlGaAs based nanodevices ,FOS: Physical sciences ,fabrication ,wave ,programming ,acoustic ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,surface ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,numerical calculations ,qubit ,Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,quantum mechanics ,Quantum computers ,quantum dot ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Control and Systems Engineering ,Electron flying qubits ,Modelling quantum nanodevices ,Quantum Physics (quant-ph) ,experimental results - Abstract
The progress of charge manipulation in semiconductor-based nanoscale devices opened up a novel route to realise a flying qubit with a single electron. In the present review, we introduce the concept of these electron flying qubits, discuss their most promising realisations and show how numerical simulations are applicable to accelerate experimental development cycles. Addressing the technological challenges of flying qubits that are currently faced by academia and quantum enterprises, we underline the relevance of interdisciplinary cooperation to move emerging quantum industry forward. The review consists of two main sections: Pathways towards the electron flying qubit: We address three routes of single-electron transport in GaAs-based devices focusing on surface acoustic waves, hot-electron emission from quantum dot pumps and Levitons. For each approach, we discuss latest experimental results and point out how numerical simulations facilitate engineering the electron flying qubit. Numerical modelling of quantum devices: We review the full stack of numerical simulations needed for fabrication of the flying qubits. Choosing appropriate models, examples of basic quantum mechanical simulations are explained in detail. We discuss applications of open-source (KWANT) and the commercial (nextnano) platforms for modelling the flying qubits. The discussion points out the large relevance of software tools to design quantum devices tailored for efficient operation., Comment: 44 pages, 13 figure, this review will be published in Collection on "Quantum Industry" of EPJ Quantum Technology
- Full Text
- View/download PDF