Dendrites are tree-like structures with tiny spines specialized to receive excitatory synaptic transmission. Spino-dendritic plasticity, driven by neural activity, underlies the maintenance of neuronal connections crucial for proper circuit function. Abnormalities in dendritic morphology are frequently seen in epilepsy. However, the exact etiology or functional implications are not yet known. Therefore, to better comprehend the structure-function significance of this dendritic pathology in epilepsy, it is necessary to identify the common spino-dendritic disturbances present in both human and experimental models. Here, we describe the dendritic and spine structural profiles found across human refractory epilepsy as well as in animal models of developmental, acquired, and genetic epilepsies. [ABSTRACT FROM AUTHOR]