1. Phthalic acid esters in grains, vegetables, and fruits: concentration, distribution, composition, bio-accessibility, and dietary exposure.
- Author
-
Zhang, Tong, Ma, Bianbian, and Wang, Lijun
- Subjects
PHTHALATE esters ,ROOT crops ,FRUIT ,DIETHYL phthalate ,GRAIN ,VEGETABLES ,EDIBLE greens - Abstract
Grain, vegetable, and fruit samples were collected from Xi'an City in Northwest China and analyzed for the characteristics, bio-accessibility, and dietary exposure of 22 phthalic acid esters (PAEs). All the studied PAEs were ubiquitously detected, except for diethyl phthalate in vegetables and fruits. In grains, the sum of detectable PAEs (∑22PAEs) varied between 0.0840 and 40.0 µg/g, with a mean of 4.19 µg/g, presenting rice > > beans > flour, and the major PAEs were di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP). In vegetables, the ∑21PAEs ranged from 0.190 to 56.8 µg/g, with a mean of 8.07 µg/g, exhibiting leafy vegetables > root vegetables > fruits-vegetables > fungus > cauliflower > beans, and the main PAEs were di-iso-butyl phthalate (DiBP), DnBP, DEHP, di-iso-nonyl phthalate (DiNP), and di-iso-decyl phthalate (DiDP). In fruits, the ∑21PAEs varied between 0.300 and 12.6 µg/g, with a mean of 3.97 µg/g, presenting spring-winter season fruits > summer-autumn season fruits and shell-less fruits > shelled fruits, and the predominant PAEs were DiBP, DnBP, DEHP, DiNP, and DiDP. The bio-accessibility of PAEs in the gastrointestinal fluid simulant was higher than that in the single gastric or intestinal fluid simulant. The bio-accessibility of PAEs was correlated with the physiochemical properties of PAEs. The estimated daily intakes (EDIs) of human dietary exposure to PAEs were lower than the reference doses of United States Environmental Protection Agency and the tolerable dairy intakes (TDIs) of European Food Safety Authority (EFSA), except for the EDI of DnBP in the grains and DiBP in the vegetables higher than or close to the TDI of the EFSA. The research suggested that special attention should be paid to human dietary exposure to DnBP and DiBP, especially for children and adolescents. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF