1. Genomes of ubiquitous marine and hypersaline Hydrogenovibrio , Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments
- Author
-
Cheryl A. Kerfeld, Eva Chase, Jason C. Richardson, Tara L. Harmer, Chris Daum, Emily A. McIntyre, Nicole Shapiro, Kaleigh M. Nelson, Darren S. Dunlap, Brittney D. Moore, Manoj Pillay, Kimmy N. Nguyen, Marcel Huntemann, Neha Varghese, Maki Tabuchi, Christie K. Campla, Michael R. Solone, John Williams, Natalia Ivanova, Rich Boden, Alicia Clum, Zachery R. Staley, William A. Morgan, Elizabeth M. Fahsbender, T. B. K. Reddy, Courtney Lewis, Dawn B. Goldsmith, Gary J. Camper, Christina M. Rodgers, Dimitrios Stamatis, Jessica A. Mine, David G. Parrino, Leila G. Casella, Pauline Wanjugi, Brent L. Schaffer, Elizabeth A. Rampersad, Suzanne Young, Ryan Keeley, Anangamanjari D. Pedapudi, Breanna I. Kussy, Stephanie Lawler, Cody M. B. Porter, Kathleen M. Scott, John H. Paul, Nancy E. Sheridan, Nicholas Ogburn, Paola A. Mancera, James W. Conrad, Nikos C. Kyrpides, Ramond J. Waide, Rebecca P. Pelham, Tanja Woyke, Mercedez C. Cruz, Krishnaveni Palaniappan, Matthew R. Kondoff, Sydney Russel, Sharyn K. Freyermuth, Evan C. McClenthan, Brittany Leigh, Natalia Mikhailova, Swapnil Modi, Amanda M. Preece, Lygia M. Lostal, Devon Marking, Megan K. Bridges, Laura Duran, Kirsten M. Antonen, and Marannda K. Lane
- Subjects
0301 basic medicine ,Cytochrome ,Operon ,030106 microbiology ,Biology ,biology.organism_classification ,Microbiology ,Genome ,03 medical and health sciences ,Carboxysome ,030104 developmental biology ,Evolutionary biology ,Horizontal gene transfer ,Gammaproteobacteria ,biology.protein ,Cytochrome c oxidase ,Gene ,Ecology, Evolution, Behavior and Systematics - Abstract
Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.
- Published
- 2018