1. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts
- Author
-
Jennifer L. Morrow, Martin J. Steinbauer, Aidan A. G. Hall, Gary S. Taylor, James M. Cook, Markus Riegler, Scott N. Johnson, and Caroline Fromont
- Subjects
0301 basic medicine ,Sodalis ,food.ingredient ,Phylogenetic tree ,Obligate ,Host (biology) ,fungi ,biochemical phenomena, metabolism, and nutrition ,Biology ,biology.organism_classification ,Microbiology ,Hemiptera ,Aphalaridae ,03 medical and health sciences ,030104 developmental biology ,food ,Evolutionary biology ,Phylogenetics ,bacteria ,Arsenophonus ,Ecology, Evolution, Behavior and Systematics - Abstract
Coevolution between insects and bacterial endosymbionts contributes to the success of many insect lineages. For the first time, we tested for phylogenetic codivergence across multiple taxonomic scales, from within genera to superfamily between 36 psyllid species of seven recognised families (Hemiptera: Psylloidea), their exclusive primary endosymbiont Carsonella and more diverse secondary endosymbionts (S-endosymbionts). Within Aphalaridae, we found that Carsonella and S-endosymbionts were fixed in one Glycaspis and 12 Cardiaspina populations. The dominant S-endosymbiont was Arsenophonus, while Sodalis was detected in one Cardiaspina species. We demonstrated vertical transmission for Carsonella and Arsenophonus in three Cardiaspina species. We found strong support for strict cospeciation and validated the informative content of Carsonella as extended host genome for inference of psyllid relationships. However, S-endosymbiont and host phylogenies were incongruent, and displayed signs of host switching and endosymbiont replacement. The high incidence of Arsenophonus in psyllids and other plant sap-feeding Hemiptera may be due to repeated host switching within this group. In two psyllid lineages, Arsenophonus and Sodalis genes exhibited accelerated evolutionary rates and AT-biases characteristic of long-term host associations. Together with strict vertical transmission and 100% prevalence within host populations, our results suggest an obligate, and not facultative, symbiosis between psyllids and some S-endosymbionts.
- Published
- 2016
- Full Text
- View/download PDF