3 results on '"Roudbaraki M"'
Search Results
2. Stimulation of intracellular free calcium in GH3 cells by gamma3-melanocyte-stimulating hormone. Involvement of a novel melanocortin receptor?
- Author
-
Langouche L, Roudbaraki M, Pals K, and Denef C
- Subjects
- Adrenal Glands metabolism, Animals, Brain metabolism, CHO Cells, Cell Line, Cricetinae, Humans, Melanocyte-Stimulating Hormones pharmacology, Oligopeptides pharmacology, Pituitary Gland, Rats, Receptor, Melanocortin, Type 3, Receptor, Melanocortin, Type 4, Receptors, Corticotropin drug effects, Receptors, Corticotropin genetics, Recombinant Proteins pharmacology, Reverse Transcriptase Polymerase Chain Reaction, Thyrotropin-Releasing Hormone pharmacology, Transfection, alpha-MSH analogs & derivatives, gamma-MSH pharmacology, Calcium metabolism, Cyclic AMP metabolism, Receptors, Corticotropin physiology, gamma-MSH physiology
- Abstract
The melanocortin (MC) gamma3MSH is a peptide that can be generated from the N-terminal domain of POMC and is believed to signal through the MC3 receptor. We recently showed that it induces a sustained rise in intracellular free calcium levels ([Ca(2+)](i)) in a subpopulation of pituitary cells, particularly in the lactosomatotroph lineage. In the present study we report that gamma3MSH and some analogs increase [Ca(2+)](i) in the GH- and PRL-secreting GH3 cell line and evaluate on the basis of pharmacological experiments and gene expression studies which MC receptor may be involved. A dose as low as 1 pM gamma3MSH induced an oscillating [Ca(2+)](i) increase in a significant percentage of GH3 cells. Increasing the dose recruited an increasing number of responding cells; a maximum was reached at 0.1 nM. gamma2MSH, alphaMSH, and NDP-alphaMSH displayed a similar effect. SHU9119, an MC3 and MC4 receptor antagonist, and an MC5 receptor agonist, did not affect the number of cells showing a [Ca(2+)](i) rise in response to gamma3MSH. SHU9119 had also no effect when added alone. MTII, a potent synthetic agonist of the MC3, MC4, and MC5 receptor as well as an N-terminally extended recombinant analog of gamma3MSH showed low potency in increasing [Ca(2+)](i) in GH3 cells, but high potency in stimulating cAMP accumulation in HEK 293 cells stably transfected with the MC3 receptor. In contrast, a peptide corresponding to the gamma2MSH sequence of POMC-A of Acipenser transmontanus increased [Ca(2+)](i) in GH3 cells, but was about 50 times less potent than gamma2- or gamma3MSH in stimulating cAMP accumulation in the MC3 receptor expressing HEK 293 cells. By means of RT-PCR performed on a RNA extract from GH3 cells, the messenger RNA of the MC2, MC3, and MC4 receptor was undetectable, but messenger RNA of the MC5 receptor was clearly present. These data suggest that the GH3 cell line does not mediate the effect of gamma3MSH through the MC3 receptor. The involvement of the MC5 receptor is unlikely, but cannot definitely be excluded. The findings animate the hypothesis that there exists a second, hitherto unidentified, MC receptor that displays high affinity for gamma3MSH.
- Published
- 2001
- Full Text
- View/download PDF
3. Target cells of gamma3-melanocyte-stimulating hormone detected through intracellular Ca2+ responses in immature rat pituitary constitute a fraction of all main pituitary cell types, but mostly express multiple hormone phenotypes at the messenger ribonucleic acid level. Refractoriness to melanocortin-3 receptor blockade in the lacto-somatotroph lineage.
- Author
-
Roudbaraki M, Lorsignol A, Langouche L, Callewaert G, Vankelecom H, and Denef C
- Subjects
- Animals, Cell Line, Female, Growth Hormone metabolism, Hormones metabolism, Phenotype, Pituitary Gland metabolism, Pituitary Gland physiology, Prolactin metabolism, RNA, Messenger metabolism, Rats, Rats, Wistar, Receptor, Melanocortin, Type 3, Receptors, Corticotropin antagonists & inhibitors, Animals, Newborn physiology, Calcium metabolism, Intracellular Membranes metabolism, Melanocyte-Stimulating Hormones physiology, Pituitary Gland cytology
- Abstract
Gamma3-MSH has recently been shown to be a biologically active peptide in the rat anterior pituitary. It induces a sustained rise in intracellular free calcium levels ([Ca2+]i) in a relatively small population of immature pituitary cells. The present study was intended to identify the target cells of this peptide and to discern the signal-transducing melanocortin (MC) receptor. In dispersed pituitary cells from 14-day-old rats, increasing doses of gamma3-MSH (0.1, 1, and 10 nM) evoked a sustained oscillating [Ca2+]i rise in an increasing number of cells (up to 14.5%). Within the responsive cells, 53% showed GH immunoreactivity (-ir), 12% showed PRL-ir, 2% showed TSHbeta-ir, 5% showed LHbeta-ir, and 10% showed ACTH-ir, whereas 18% did not express any hormone-ir to a detectable level. As assessed by single cell RT-PCR for the presence of pituitary hormone messenger RNA (mRNA), 26% of the gamma3-MSH-responsive cells contained only GH mRNA, 5% contained only PRL mRNA, and 4% contained only TSHbeta mRNA. Twenty-two percent contained mRNA of GH, PRL, and TSHbeta in various dual or triple combinations. About 24% of the gamma3-MSH-responsive cells expressed POMC mRNA, mostly together with other mRNAs, i.e. with GH mRNA and/or PRL mRNA or with mRNA of GH, PRL, and TSHbeta. Eighteen percent of the responsive cells expressed LHbeta, all of them together with mRNA of GH, PRL, and TSHbeta in various combinations. The absence of hormone mRNA was found in less than 1% of the responsive cells. In cells chosen at random (representative of the total pituitary cell population), the proportion of cells expressing two or multiple hormone mRNAs was twice as low as that in the gamma3-MSH-responsive population, whereas the proportion of cells expressing a single hormone mRNA was twice as high (about two thirds of all cells). Moreover, unlike in the gamma3-MSH-responsive cell population, randomly chosen cells were found that coexpressed POMC mRNA with LHbeta mRNA. The effect of gamma3-MSH on [Ca2+]i was blocked by the MC-3 receptor antagonist SHU9119 (used up to a 1000-fold excess) in 46% or less of the responsive cells. SHU9119 failed to block the [Ca2+]i response to gamma3-MSH in PRL-, GH-, and TSHbeta-ir cells, but it did block the response in most ACTH-ir cells and in cells expressing no hormone to a detectable level. Single cell RT-PCR revealed that expression of MC-3 receptor mRNA was detected in only 16% of gamma3-MSH-responsive cells. The present data suggest that the target cells of gamma3-MSH in terms of [Ca2+]i responses in the immature rat pituitary constitute subpopulations of all main pituitary cell types, including nonhormonal (or low expression hormonal) cells. However, in contrast to the total pituitary cell population, most of these cells display multilineage gene activation at the mRNA level, i.e. express mRNA of GH, PRL, TSHbeta, POMC, and LHbeta in dual, triple, or quadruple combinations. Although gamma3-MSH may act through the MC-3 receptor in a portion of these cells, most of these cells (mainly in the lacto-somatotroph lineage) may transduce the signal through another receptor or through an MC-3 receptor with unconventional binding characteristics.
- Published
- 1999
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.