1. Centrosome-mediated microtubule remodeling during axon formation in human iPSC-derived neurons.
- Author
-
Lindhout FW, Portegies S, Kooistra R, Herstel LJ, Stucchi R, Hummel JJA, Scheefhals N, Katrukha EA, Altelaar M, MacGillavry HD, Wierenga CJ, and Hoogenraad CC
- Subjects
- Centrosome metabolism, Humans, Neurons metabolism, Axons metabolism, Induced Pluripotent Stem Cells metabolism, Microtubules metabolism
- Abstract
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule-organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human-induced pluripotent stem cell (iPSC)-derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule-associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live-cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus-end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC-derived neurons, thereby laying the foundation for further axon development and function., (© 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF