From an herbivore's first bite, plants release herbivory-induced plant volatiles (HIPVs) which can attract enemies of herbivores. However, other animals and competing plants can intercept HIPVs for their own use, and it remains unclear whether HIPVs serve as an indirect defense by increasing fitness for the emitting plant. In a 2-year field study, HIPV-emitting N. attenuata plants produced twice as many buds and flowers as HIPV-silenced plants, but only when native Geocoris spp. predators reduced herbivore loads (by 50%) on HIPV-emitters. In concert with HIPVs, plants also employ antidigestive trypsin protease inhibitors (TPIs), but TPI-producing plants were not fitter than TPI-silenced plants. TPIs weakened a specialist herbivore's behavioral evasive responses to simulated Geocoris spp. attack, indicating that TPIs function against specialists by enhancing indirect defense. DOI: http://dx.doi.org/10.7554/eLife.00007.001, eLife digest As the population of the world continues to increase beyond 7 billion, and agricultural pests continue to rapidly evolve resistance to pesticides, it is becoming ever more important to cultivate arable land in a way that is sustainable for both humans and the environment. A better understanding of the different mechanisms used by wild plants to deter herbivores will help to increase crop production without harming the environment. Plants use both direct and indirect methods to fend off herbivores. Direct defense methods include the production of chemicals that are toxic to herbivores or give them indigestion, and the growth of sticky prickles and spines that can injure or kill the herbivore. Indirect defense methods, on the other hand, generally rely on the plant attracting organisms that are either predators or parasites of the herbivore. Plants produce odors known as herbivory-induced plant volatiles (HIPVs) that are thought to offer indirect defense against herbivores by betraying their location to predators and parasites. However, HIPVs also influence other members of the ecological community, sometimes in ways that are detrimental to plants. Moreover, despite 30 years of research, no study has demonstrated that HIPVs increase the fitness of a plant, so it is unclear what they have evolved to do. Now, a 2-year field study by Schuman et al. has shown plants that emit green leaf volatiles (which are a type of HIPV) produce twice as many buds and flowers—a measure of fitness—as plants that have been genetically engineered not to emit green leaf volatiles. This study was conducted with Nicotiana attenuata, which is a wild tobacco plant that is often targeted by Manduca sexta, a type of moth that is also known as the tobacco hornworm. Green leaf volatiles only increased plants' fitness when various species of Geocoris—a bug that preys on Manduca sexta—reduced the number of herbivores by a factor of two. This is the first evidence that HIPVs offer indirect defense against herbivores. Schuman et al. also studied the effects of molecules called protease inhibitors that are thought to function as direct defenses by making it difficult for herbivores to digest plants. They found that the ability to produce protease inhibitors did not increase the fitness of plants under herbivore attack; however, tobacco hornworms that had been fed plants containing protease inhibitors were found to be more sluggish in response to attack, which suggests that protease inhibitors can enhance the indirect defenses of plants. The results suggest that employing both direct and indirect defenses—such as a combination of biological pesticides and genetic engineering to produce both HIPVs and protease inhibitors—is the best approach for defending agricultural plants against pests. DOI: http://dx.doi.org/10.7554/eLife.00007.002