1. HIV skews the SARS-CoV-2 B cell response towards an extrafollicular maturation pathway.
- Author
-
Krause R, Snyman J, Shi-Hsia H, Muema D, Karim F, Ganga Y, Ngoepe A, Zungu Y, Gazy I, Bernstein M, Khan K, Mazibuko M, Mthabela N, Ramjit D, Limbo O, Jardine J, Sok D, Wilson IA, Hanekom W, Sigal A, Kløverpris H, Ndung'u T, and Leslie A
- Subjects
- Humans, SARS-CoV-2, Spike Glycoprotein, Coronavirus metabolism, South Africa, Antibodies, Viral, COVID-19, HIV Infections
- Abstract
Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections., Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features., Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins., Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge., Funding: This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation., Competing Interests: RK, JS, HS, DM, FK, YG, AN, YZ, IG, MB, KK, MM, NM, DR, OL, JJ, DS, IW, AS, HK, TN, AL No competing interests declared, WH Reviewing editor, eLife, (© 2022, Krause et al.)
- Published
- 2022
- Full Text
- View/download PDF