1. Deep-Reinforcement-Learning-Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User Safety.
- Author
-
Chen, Haochong, Cao, Xincheng, Guvenc, Levent, and Aksun-Guvenc, Bilin
- Subjects
DEEP reinforcement learning ,REINFORCEMENT learning ,ROAD users ,ROAD safety measures ,TRAFFIC safety ,SEARCH algorithms ,AUTONOMOUS vehicles ,PEDESTRIANS - Abstract
The application of autonomous driving system (ADS) technology can significantly reduce potential accidents involving vulnerable road users (VRUs) due to driver error. This paper proposes a novel hierarchical deep reinforcement learning (DRL) framework for high-performance collision avoidance, which enables the automated driving agent to perform collision avoidance maneuvers while maintaining appropriate speeds and acceptable social distancing. The novelty of the DRL method proposed here is its ability to accommodate dynamic obstacle avoidance, which is necessary as pedestrians are moving dynamically in their interactions with nearby ADSs. This is an improvement over existing DRL frameworks that have only been developed and demonstrated for stationary obstacle avoidance problems. The hybrid A* path searching algorithm is first applied to calculate a pre-defined path marked by waypoints, and a low-level path-following controller is used under cases where no VRUs are detected. Upon detection of any VRUs, however, a high-level DRL collision avoidance controller is activated to prompt the vehicle to either decelerate or change its trajectory to prevent potential collisions. The CARLA simulator is used to train the proposed DRL collision avoidance controller, and virtual raw sensor data are utilized to enhance the realism of the simulations. The model-in-the-loop (MIL) methodology is utilized to assess the efficacy of the proposed DRL ADS routine. In comparison to the traditional DRL end-to-end approach, which combines high-level decision making with low-level control, the proposed hierarchical DRL agents demonstrate superior performance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF