1. Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems
- Author
-
Albert Sabban
- Subjects
metamaterial antennas ,IoT ,TK7800-8360 ,medical applications ,Computer Networks and Communications ,sensors ,wearable antennas ,circular polarized antennas ,active sensors ,5G ,energy harvesting ,self-powered sensors ,Hardware and Architecture ,Control and Systems Engineering ,Signal Processing ,Electronics ,Electrical and Electronic Engineering - Abstract
Novel circular polarized sensors and antennas for biomedical systems, energy harvesting, Internet of Things (IoT), and 5G devices are presented in this article. The major challenge in development of healthcare, IoT, 5G and communication systems is the evaluation of circular polarized active and passive wearable antennas. Moreover, a low-cost wearable sensor may be evaluated by printing the microstrip antenna with the sensor feed network and the active devices on the same substrate. Design considerations, comparison between simulation and measured results of compact circular polarized efficient sensors for wireless, 5G, energy harvesting, IoT, and medical systems are highlighted in this article. The electrical performance of the novel sensors and antennas on and near the user body were evaluated by employing electromagnetic software. Efficient passive and active metamaterial circular polarized antennas and sensors were developed to improve the system electrical performance. The wearable compact circular polarized passive and active sensors are efficient, flexible, and low-cost. The frequency range of the resonators, without Circular Split-Ring Resonators CSRRs, is higher by 4% to 10% than the resonators with CSRRs. The gain of the circular polarized antennas without CSRRs is lower by 2 dB to 3 dB than the resonators with CSRRs. The gain of the new passive antennas with CSRRs is around 7 dBi to 8.4 dBi. The bandwidth of the new circular polarized antennas with CSRRs is around 10% to 20%. The sensors VSWR is better than 3:1. The passive and active efficient metamaterials antennas improve the system performance.
- Published
- 2022
- Full Text
- View/download PDF