In avian species, maternal provisioning to the eggs is predicted to be more valuable for the offspring under adverse environmental conditions and intense sibling competition. However, studies manipulating both the amount of maternal pre-hatching resources and the harshness of post-hatching environment have seldom been performed to date. In this experimental study of Barn Swallow (Hirundo rustica) nestlings, we tested the consequences of a reduction in the albumen content of the eggs for fitness-related offspring traits, while performing an unbalanced partial cross-fostering soon after hatching, either increasing or decreasing brood size by one nestling. By molecular sexing of the chicks, we additionally tested for sex-specific sensitivity of individual nestlings to experimental treatments and to sex ratio variation in nestmates. We predicted that chicks hatching from albumen-deprived eggs should suffer more than control chicks from the harsher rearing conditions of enlarged broods. However, although albumen removal depressed chick body mass, chicks hatching from control eggs did not fare better than those hatching from eggs with reduced albumen content in enlarged vs. reduced broods. Albumen removal had sex-specific effects on immunity, with males, but not females, hatching from eggs with reduced albumen content showing a lower T-cell-mediated immune response than controls, suggesting that the two sexes were differentially susceptible to resource deprivation during early ontogeny. In addition, both immune response and chick body mass at age 7 days, when maximum growth rate is attained, declined with an increasing proportion of male nestmates. The effect of brood size manipulation on chick body mass at age 12 days, when peak body mass is attained, was also found to depend on brood sex composition, in that an increase in the proportion of male nestmates depressed offspring body mass in reduced broods, while the reverse was true in enlarged broods. On the whole, these findings suggest that sex differences may exist in environmental sensitivity and patterns of resource allocation among different body functions, and that brood size variation and sex composition may affect offspring fitness-related traits.