1. Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
- Author
-
Alon Geva, Manish M. Patel, Margaret M. Newhams, Cameron C. Young, Mary Beth F. Son, Michele Kong, Aline B. Maddux, Mark W. Hall, Becky J. Riggs, Aalok R. Singh, John S. Giuliano, Charlotte V. Hobbs, Laura L. Loftis, Gwenn E. McLaughlin, Stephanie P. Schwartz, Jennifer E. Schuster, Christopher J. Babbitt, Natasha B. Halasa, Shira J. Gertz, Sule Doymaz, Janet R. Hume, Tamara T. Bradford, Katherine Irby, Christopher L. Carroll, John K. McGuire, Keiko M. Tarquinio, Courtney M. Rowan, Elizabeth H. Mack, Natalie Z. Cvijanovich, Julie C. Fitzgerald, Philip C. Spinella, Mary A. Staat, Katharine N. Clouser, Vijaya L. Soma, Heda Dapul, Mia Maamari, Cindy Bowens, Kevin M. Havlin, Peter M. Mourani, Sabrina M. Heidemann, Steven M. Horwitz, Leora R. Feldstein, Mark W. Tenforde, Jane W. Newburger, Kenneth D. Mandl, and Adrienne G. Randolph
- Subjects
COVID-19 ,Multisystem inflammatory syndrome ,Pediatrics ,Critical care medicine ,Clustering ,Medicine (General) ,R5-920 - Abstract
Background: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. Methods: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians)
- Published
- 2021
- Full Text
- View/download PDF