1. Choosability of the square of planar subcubic graphs with large girth
- Author
-
Frédéric Havet, Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
Discrete mathematics ,010102 general mathematics ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Graph ,Planar graph ,Theoretical Computer Science ,Choice number ,Combinatorics ,symbols.namesake ,Planar ,List colouring ,010201 computation theory & mathematics ,Square of a graph ,symbols ,Discrete Mathematics and Combinatorics ,0101 mathematics ,Bounded density ,Mathematics - Abstract
International audience; We show that the choice number of the square of a subcubic graph with maximum average degree less than 18/7 is at most 6. As a corollary, we get that the choice number of the square of a subcubic planar graph with girth at least 9 is at most 6. We then show that the choice number of the square of a subcubic planar graph with girth at least 13 is at most 5.
- Published
- 2009
- Full Text
- View/download PDF