1. Boundedness and stabilization in a two-species chemotaxis system with two chemicals
- Author
-
Chunlai Mu, Liangchen Wang, Xuegang Hu, and Jing Zhang
- Subjects
Physics ,Exponential convergence ,Applied Mathematics ,010102 general mathematics ,01 natural sciences ,Omega ,010101 applied mathematics ,Combinatorics ,Homogeneous ,Bounded function ,Signal production ,Domain (ring theory) ,Discrete Mathematics and Combinatorics ,Nabla symbol ,0101 mathematics - Abstract
This paper deals with the two-species chemotaxis system with two chemicals \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = d_1\Delta u-\nabla\cdot(u\chi_1(v)\nabla v)+\mu_1 u(1-u-a_1w),\quad x'>under homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^n $\end{document} ( \begin{document}$ n\geq1 $\end{document} ), where the parameters \begin{document}$ d_1,d_2,d_3,d_4>0 $\end{document} , \begin{document}$ \mu_1,\mu_2>0 $\end{document} , \begin{document}$ a_1,a_2>0 $\end{document} and \begin{document}$ \alpha, \beta>0 $\end{document} . The chemotactic function \begin{document}$ \chi_i $\end{document} ( \begin{document}$ i = 1,2 $\end{document} ) and the signal production function \begin{document}$ f_i $\end{document} ( \begin{document}$ i = 1,2 $\end{document} ) are smooth. If \begin{document}$ n = 2 $\end{document} , it is shown that this system possesses a unique global bounded classical solution provided that \begin{document}$ |\chi'_i| $\end{document} ( \begin{document}$ i = 1,2 $\end{document} ) are bounded. If \begin{document}$ n\leq3 $\end{document} , this system possesses a unique global bounded classical solution provided that \begin{document}$ \mu_i $\end{document} ( \begin{document}$ i = 1,2 $\end{document} ) are sufficiently large. Specifically, we first obtain an explicit formula \begin{document}$ \mu_{i0}>0 $\end{document} such that this system has no blow-up whenever \begin{document}$ \mu_i>\mu_{i0} $\end{document} . Moreover, by constructing suitable energy functions, it is shown that: \begin{document}$ \bullet $\end{document} If \begin{document}$ a_1,a_2\in(0,1) $\end{document} and \begin{document}$ \mu_1 $\end{document} and \begin{document}$ \mu_2 $\end{document} are sufficiently large, then any global bounded solution exponentially converges to \begin{document}$\bigg(\frac{1-a_1}{1-a_1a_2},f_1(\frac{1-a_2}{1-a_1a_2})/\alpha,\frac{1-a_2}{1-a_1a_2},$\end{document} \begin{document}$ f_2(\frac{1-a_1}{1-a_1a_2})/\beta\bigg)$\end{document} as \begin{document}$ t\rightarrow\infty $\end{document} ; \begin{document}$ \bullet $\end{document} If \begin{document}$ a_1>1>a_2>0 $\end{document} and \begin{document}$ \mu_2 $\end{document} is sufficiently large, then any global bounded solution exponentially converges to \begin{document}$ (0,f_1(1)/\alpha,1,0) $\end{document} as \begin{document}$ t\rightarrow\infty $\end{document} ; \begin{document}$ \bullet $\end{document} If \begin{document}$ a_1 = 1>a_2>0 $\end{document} and \begin{document}$ \mu_2 $\end{document} is sufficiently large, then any global bounded solution algebraically converges to \begin{document}$ (0,f_1(1)/\alpha,1,0) $\end{document} as \begin{document}$ t\rightarrow\infty $\end{document} .
- Published
- 2020