1. m6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells
- Author
-
Zhen Lin, Shu Wang, Weiqing Wang, Weizhen Zhang, Guang Ning, Qidi Wang, Jiajun Sun, and Yanqiu Wang
- Subjects
0301 basic medicine ,Cell growth ,Endocrinology, Diabetes and Metabolism ,Cellular differentiation ,Cell ,030209 endocrinology & metabolism ,Biology ,Embryonic stem cell ,Cell biology ,Transcriptome ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,medicine.anatomical_structure ,DNA methylation ,Internal Medicine ,medicine ,MRNA methylation ,Progenitor cell - Abstract
The N6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14nKO) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.
- Published
- 2020
- Full Text
- View/download PDF