5 results on '"Sebastian Bickelhaupt"'
Search Results
2. [Imaging of the lung using low-field magnetic resonance imaging]
- Author
-
Maximilian, Hinsen, Rafael, Heiss, Armin M, Nagel, Simon, Lévy, Michael, Uder, Sebastian, Bickelhaupt, and Matthias S, May
- Subjects
Lung Diseases ,Pregnancy ,Image Processing, Computer-Assisted ,Humans ,Female ,Thorax ,Child ,Lung ,Magnetic Resonance Imaging - Abstract
Lung magnetic resonance imaging (MRI) examinations are challenging and have not become established in the routine clinical setting. Recent developments in low-field MRI, combined with computer-assisted algorithms for acquisition and evaluation, promise new perspectives for imaging of pulmonary diseases.This review aims to inform about the physical advantages of low-field MRI for imaging the lungs, provide a review of the sparse literature, and present first results from a new low-field MRI scanner.This article provides information on the physical principles, an review of the literature, and our first experiences in lung imaging on a modern 0.55 T MRI.Low-field MRI ( 1 T) may have technical and economic advantages over higher field strength MRI in lung imaging. The physical preconditions of low-field MRI are advantageous for imaging the lungs due to reduced susceptibility effects, increased transversal relaxation times, and lower specific absorption rates. The lower investment and operating costs may enable increased availability and sustainability. Combining modern sequences and computer-based image processing may expand beyond morphological imaging by providing spatially and temporally resolved functional examinations of the lung parenchyma without ionizing radiation. In critical scenarios, like screening and short-term follow-up examinations, and patients at risk, low-field MRI may bridge the gap. These indications may include acute and chronic pulmonary diseases in pediatric patients and suspected pulmonary embolisms in pregnant women.HINTERGRUND: Die Untersuchung der Lunge mit der Magnetresonanztomographie (MRT) geht mit hohen Herausforderungen einher und konnte sich im klinischen Alltag bisher nicht durchsetzen. Aktuelle Entwicklungen der Niederfeld-MRT, in Kombination mit neuen computergestützten Aufnahme- und Auswertungsalgorithmen, versprechen neue Perspektiven für die bildgebende Diagnostik pulmonaler Erkrankungen.Diese Übersichtsarbeit soll ein Verständnis der physikalischen Vorteile der Niederfeld-MRT für die Lungenbildgebung vermitteln, einen Überblick über die spärlich vorhandenen Vorkenntnisse aus der Literatur bieten und erste Ergebnisse eines neu entwickelten Niederfeld-MRT präsentieren.Inhalte dieses Artikels basieren auf physikalischen Grundlagen, Recherchen in Literaturdatenbanken und eigenen Erfahrungen in der Lungenbildgebung mit einem modernen 0,55-T-MRT.Die Niederfeld-MRT ( 1 T) kann technische und ökonomische Vorteile gegenüber höheren Feldstärken für die Lungenbildgebung haben. Die physikalischen Voraussetzungen sind aufgrund geringerer Suszeptibilitätseffekte, längerer transversaler Relaxationszeiten und niedrigerer spezifischer Absorptionsraten besonders für die Anatomie der Lunge vorteilhaft. Die geringeren Anschaffungs- und Betriebskosten haben zudem ein großes Potenzial, die Verfügbarkeit zu erhöhen und gleichzeitig die Nachhaltigkeit zu verbessern. Durch die Kombination moderner Sequenzen und computergestützter Auswertungen kann die morphologische Bildgebung um orts- und zeitaufgelöste funktionelle Untersuchungen der Lunge ohne Strahlenbelastung ergänzt werden. Sowohl für kritische Szenarien, wie Screening und engmaschiges Therapiemonitoring, als auch für besonders gefährdete Patientengruppen könnten Lücken geschlossen werden. Dazu gehören beispielsweise akute und chronische Lungenerkrankungen bei Kindern oder die Abklärung einer Lungenembolie bei Schwangeren.
- Published
- 2022
3. Diffusionsbildgebung – diagnostische Erweiterung oder Ersatz von Kontrastmitteln in der Früherkennung von Malignomen?
- Author
-
Sebastian Bickelhaupt, Daniel Paech, Heinz Peter Schlemmer, Constantin Dreher, Franziska König, Tristan Anselm Kuder, and Katerina Deike-Hofmann
- Subjects
medicine.medical_specialty ,medicine.diagnostic_test ,business.industry ,Early detection ,Potential candidate ,Magnetic resonance imaging ,Medical research ,Imaging data ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,030220 oncology & carcinogenesis ,Data quality ,medicine ,Radiology, Nuclear Medicine and imaging ,Medical physics ,cardiovascular diseases ,business ,Diffusion MRI ,Neuroradiology - Abstract
Medical research in the field of oncologic imaging diagnostics using magnetic resonance imaging increasingly includes diffusion-weighted imaging (DWI) sequences. The DWI sequences allow insights into different microstructural diffusion properties of water molecules in tissues depending on the sequence modification used and enable visual and quantitative analysis of the acquired imaging data. In DWI, the application of intravenous gadolinium-containing contrast agents is unnecessary and only the mobility of naturally occurring water molecules in tissues is quantified. These characteristics predispose DWI as a potential candidate for emerging as an independent diagnostic tool in selected cases and specific points in question. Current clinical diagnostic studies and the ongoing technical developments, including the increasing influence of artificial intelligence in radiology, support the growing importance of DWI. Especially with respect to selective approaches for early detection of malignancies, DWI could make an essential contribution as an eligible diagnostic tool; however, prior to discussing a broader clinical implementation, challenges regarding reliable data quality, standardization and quality assurance must be overcome.
- Published
- 2019
- Full Text
- View/download PDF
4. Ausgewählte klinisch etablierte und wissenschaftliche Techniken der diffusionsgewichteten MRT
- Author
-
Sebastian Bickelhaupt, Tristan Anselm Kuder, K. Meier-Hein, Jennifer Mosebach, Martin T. Freitag, Christian H. Ziener, J. P. Radtke, Heinz Peter Schlemmer, and F. B. Laun
- Subjects
medicine.medical_specialty ,medicine.diagnostic_test ,business.industry ,Whole body imaging ,Context (language use) ,Magnetic resonance imaging ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,030220 oncology & carcinogenesis ,Medicine ,Breast MRI ,Effective diffusion coefficient ,Radiology, Nuclear Medicine and imaging ,Radiology ,business ,Diffusion Kurtosis Imaging ,Intravoxel incoherent motion ,Diffusion MRI - Abstract
Background Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that was established in the clinical routine primarily for the detection of brain ischemia. In the past 15 years its clinical use has been extended to oncological radiology, as tumor and metastases can be depicted in DWI due to their hypercellular nature. Principles The basis of DWI is the Stejskal-Tanner experiment. The diffusion properties of tissue can be visualized after acquisition of at least two diffusion-weighted series using echo planar imaging and a specific sequence of gradient pulses. Clinical applications The use of DWI in prostate MRI was reported to be one of the first established applications that found its way into internationally recognized clinical guidelines of the European Society of Urological Radiology (ESUR) and the prostate imaging reporting and data system (PI-RADS) scale. Due to recently reported high specificity and negative predictive values of 94% and 92%, respectively, its regular use for breast MRI is expected in the near future. Furthermore, DWI can also reliably be used for whole-body imaging in patients with multiple myeloma or for measuring the extent of bone metastases. Outlook New techniques in DWI, such as intravoxel incoherent motion imaging, diffusion kurtosis imaging and histogram-based analyses represent promising approaches to achieve a more quantitative evaluation for tumor detection and therapy response.
- Published
- 2016
- Full Text
- View/download PDF
5. Diffusion-weighted breast imaging
- Author
-
Stefan Delorme, Daniel Paech, Katerina Deike-Hofmann, Constantin Dreher, Sebastian Bickelhaupt, Heinz-Peter Schlemmer, Franziska König, and Tristan Anselm Kuder
- Subjects
medicine.medical_specialty ,Breast imaging ,Breast Neoplasms ,Sensitivity and Specificity ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Breast cancer ,medicine ,Medical imaging ,Breast MRI ,Humans ,Radiology, Nuclear Medicine and imaging ,cardiovascular diseases ,Breast ,Cardiac imaging ,Neuroradiology ,medicine.diagnostic_test ,business.industry ,Ultrasound ,Magnetic resonance imaging ,medicine.disease ,Image Enhancement ,Diffusion Magnetic Resonance Imaging ,030220 oncology & carcinogenesis ,Female ,Radiology ,business - Abstract
Magnetic resonance imaging (MRI) of the breast represents one of the most sensitive imaging modalities in breast cancer detection. Diffusion-weighted imaging (DWI) is a sequence variation introduced as a complementary MRI technique that relies on mapping the diffusion process of water molecules thereby providing additional information about the underlying tissue. Since water diffusion is more restricted in most malignant tumors than in benign ones owing to the higher cellularity of the rapidly proliferating neoplasia, DWI has the potential to contribute to the identification and characterization of suspicious breast lesions. Thus, DWI might increase the diagnostic accuracy of breast MRI and its clinical value. Future applications including optimized DWI sequences, technical developments in MR devices, and the application of radiomics/artificial intelligence algorithms may expand the potential of DWI in breast imaging beyond its current supplementary role.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.