1. Food web structure in two counter-rotating eddies based on δ 15N and δ 13C isotopic analyses
- Author
-
Waite, A.M., Muhling, B.A., Holl, C.M., Beckley, L.E., Montoya, J.P., Strzelecki, J., Thompson, P.A., and Pesant, S.
- Subjects
- *
EDDIES , *FLUID dynamics , *TURBULENCE , *PHYTOPLANKTON - Abstract
Abstract: We measured the natural inventories of nitrogen and carbon stable isotopes within various ecosystem fractions of two counter-rotating eddies associated with the poleward Leeuwin Current (LC), off Western Australia. Isotopic signatures (δ 15N and δ 13C) were used as proxies for trophic transformation of inorganic and organic matter and are the basis for our discussion on food web functions in the two eddies. We present the first measurements of dissolved inorganic nitrogen (DIN) isotopic composition for the eastern Indian Ocean. We show that the large autotrophs (sampled within the >5-μm and >20-μm fractions of particulate organic matter (POM)), including a distinctive diatom population in the warm-core (WC) eddy, are likely to have taken up sources of DIN which were primarily nitrate, while the picoplankton are likely to have assimilated a large fraction of recycled ammonium. We show that phytoplankton in the cold-core (CC) eddy had distinctly more enriched δ 15N signatures than in the WC eddy, probably due to the higher vertical fluxes of nitrate into the CC eddy. A clear negative correlation between mixed-layer depth and δ 15N in POM across both eddies also supports the role of vertical nitrate fluxes in determining the primary δ 15N signature of the autotrophs. Within the WC eddy, there was a significant δ 13C-enrichment in comparison to the CC eddy across all size fractions of the mesozooplankton community, which, in combination with a low C:N molar ratio the >200- and >500-μm mesozooplankton size fractions, suggests a healthier mesozooplankton community, with greater lipid storage, in the WC eddy. This is consistent with the greater productivity and biomass of large diatoms in the WC eddy. Larval fish from the WC eddy also had an enriched δ 13C signature compared to those from the CC eddy. The WC eddy had higher production rates than the CC eddy, and harboured a physiologically healthier population of zooplankton. Paradoxically, this seemed to occur despite higher overall nitrate fluxes into the CC eddy, and may have to do with the particularly active diatom population within the WC eddy operating within the unusually deep mixed layer. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF