1. TIR-domain enzymatic activities at the heart of plant immunity.
- Author
-
Locci F, Wang J, and Parker JE
- Subjects
- Animals, Plant Proteins genetics, Plant Proteins chemistry, Plant Immunity, Plants metabolism, Disease Resistance, Bacteria metabolism, Plant Diseases microbiology, Mammals metabolism, Interleukin-1, Arabidopsis Proteins metabolism
- Abstract
Toll/interleukin-1/resistance (TIR) domain proteins contribute to innate immunity in all cellular kingdoms. TIR modules are activated by self-association and in plants, mammals and bacteria, some TIRs have enzymatic functions that are crucial for disease resistance and/or cell death. Many plant TIR-only proteins and pathogen effector-activated TIR-domain NLR receptors are NAD
+ hydrolysing enzymes. Biochemical, structural and functional studies established that for both plant TIR-protein types, and certain bacterial TIRs, NADase activity generates bioactive signalling intermediates which promote resistance. A set of plant TIR-catalysed nucleotide isomers was discovered which bind to and activate EDS1 complexes, promoting their interactions with co-functioning helper NLRs. Analysis of TIR enzymes across kingdoms fills an important gap in understanding how pathogen disturbance induces TIR-regulated immune responses., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF