The age-old process of crystal fractionation leading to the diversity of the igneous rocks and Earth itself is an exceedingly well-understood chemical process in magmatism and physical chemistry. But the broader physical aspects of this and related processes have proven elusive on many fronts, especially in its relation to the spatial variations in rock composition, texture, and macroscopic features like layering. Magmatic systems, be they volcanic, dikes, sills, or plutons, are generally analyzed with a problem at hand and an end result in mind. The processes invoked to solve these problems, which are most often purely chemical, are often unique to each problem with few if any general principles emerging that are central to understanding the wider perspective of magmatic processes and problems. An attempt is made at the outset to provide a list of inviolate Magmatic First Principles that are relevant to analyzing most magmatic problems. These involve: initial conditions; critical crystallinity; solidification fronts; transport and emplacement fluxes; phenocrysts, xenocrysts, primocrysts; crystal size; layering and crystal sorting; thermal convection; magmatic processes are physical. Along with these principles, two reference magmatic systems are suggested where the initial conditions and outcome are unequivocal: the Sudbury impact melt sheet and the Hawaiian lava lakes. Sudbury formed in ~5 min by superheated magma crystallized to a near uniform sequence, while the tiny lava lakes, formed of crystal-laden slurries, form a highly differentiated layered sequence. The major difference is in the initial conditions of formation, especially the nature of the input materials. The challenge is to construct and analyze magmatic systems (i.e., magma chambers, sills, dikes, and lavas) using these reference end members and the suggested principles. The Hawaiian 500,000 year volcanic record exhibits what can be expected as input materials, namely a highly varied output of magma of an overall composition reflecting the abundance of entrained olivine primocrysts. The provenance of these crystals is varied, and within any single sample, the population may be highly heterogeneous in composition from crystal to crystal, yet the overall pattern of chemical fractionation is exceedingly regular and well defined. If similar inputs go to form large intrusions, these systems will undoubtedly be dominated by crystal-rich slurries, which provide a vast set of physical processes promoting exotic layering and, at the same time, given the effects of annealing and continued crystal growth, a final chemical record adhering to all the time-honored effects of crystal fractionation. The long assumed initial condition of instantaneously emplaced crystal-free magmas cannot reasonably produce the observed rock records. [ABSTRACT FROM AUTHOR]