1. Numerical solution of the free boundary Bernoulli problem using a level set formulation
- Author
-
Rachid Touzani, François Bouchon, Stéphane Clain, Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS), Mathématiques pour l'Industrie et la Physique (MIP), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Level set (data structures) ,Mathematical optimization ,Mechanical Engineering ,Numerical analysis ,Computational Mechanics ,Free boundary problem ,General Physics and Astronomy ,Boundary (topology) ,010103 numerical & computational mathematics ,01 natural sciences ,Computer Science Applications ,010101 applied mathematics ,Bernoulli's principle ,Mechanics of Materials ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Applied mathematics ,Boundary value problem ,Level sets ,0101 mathematics ,Bernoulli problem ,Mathematics - Abstract
International audience; We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated.
- Published
- 2005
- Full Text
- View/download PDF