1. Hierarchical assembly in PLA-PEO-PLA hydrogels with crystalline domains and effect of block stereochemistry.
- Author
-
Yin X, Hewitt DRO, Preston AN, Heroux LA, Agamalian MM, Quah SP, Zheng B, Smith AJ, Laughlin ST, Grubbs RB, and Bhatia SR
- Subjects
- Drug Delivery Systems methods, Humans, Micelles, Porosity, Solutions, Stereoisomerism, Tissue Engineering methods, Biocompatible Materials chemical synthesis, Hydrogels chemical synthesis, Polyesters chemical synthesis, Polyethylene Glycols chemical synthesis
- Abstract
Understanding the development of microstructure (e.g., structures with length scales roughly 0.5-500 μm) in hydrogels is crucial for their use in several biomedical applications. We utilize ultra-small-angle neutron scattering (USANS) and confocal microscopy to explore microstructure of poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) triblock copolymer hydrogels with varying l/d-lactide ratio. We have previously found that these polymers self-assemble on the nanoscale into micelles. Here, we observe large-scale structures with diverse morphologies, including highly porous self-similar networks with characteristic sizes spanning approximately 120 nm-200 μm. These structural features give rise to power-law scattering indicative of fractal structures in USANS. Mass fractal and surface fractal structures are found for gels with l/d ratios of 80/20 and 50/50, respectively. Confocal microscopy shows microscale water-filled channels and pores that are more clearly evident in gels with a higher fraction of l-lactide in the PLA block as compared to the 50/50 hydrogels. Tuning block stereochemistry may provide a means of controlling the self-assembly and structural evolution at both the nanoscale and microscale, impacting application of these materials in tissue engineering and drug delivery., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF