1. Automatic detection of cortical arousals in sleep and their contribution to daytime sleepiness
- Author
-
Brink-Kjaer, Andreas, Olesen, Alexander Neergaard, Peppard, Paul E, Stone, Katie L, Jennum, Poul, Mignot, Emmanuel, and Sorensen, Helge BD
- Subjects
Biomedical and Clinical Sciences ,Cardiovascular Medicine and Haematology ,Clinical Research ,Basic Behavioral and Social Science ,Behavioral and Social Science ,Sleep Research ,Adolescent ,Adult ,Aged ,Aged ,80 and over ,Arousal ,Cerebral Cortex ,Child ,Disorders of Excessive Somnolence ,Electroencephalography ,Electromyography ,Female ,Humans ,Male ,Middle Aged ,Models ,Neurological ,Neural Networks ,Computer ,Polysomnography ,Sleep ,Young Adult ,Automatic detection ,Deep neural networks ,Daytime sleepiness ,MSLT ,Engineering ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Neurology & Neurosurgery ,Neurosciences - Abstract
ObjectiveSignificant interscorer variability is found in manual scoring of arousals in polysomnographic recordings (PSGs). We propose a fully automatic method, the Multimodal Arousal Detector (MAD), for detecting arousals.MethodsA deep neural network was trained on 2,889 PSGs to detect cortical arousals and wakefulness in 1-second intervals. Furthermore, the relationship between MAD-predicted labels on PSGs and next day mean sleep latency (MSL) on a multiple sleep latency test (MSLT), a reflection of daytime sleepiness, was analyzed in 1447 MSLT instances in 873 subjects.ResultsIn a dataset of 1,026 PSGs, the MAD achieved an F1 score of 0.76 for arousal detection, while wakefulness was predicted with an accuracy of 0.95. In 60 PSGs scored by nine expert technicians, the MAD performed comparable to four and significantly outperformed five expert technicians for arousal detection. After controlling for known covariates, a doubling of the arousal index was associated with an average decrease in MSL of 40 seconds (p = 0.0075).ConclusionsThe MAD performed better or comparable to human expert scorers. The MAD-predicted arousals were shown to be significant predictors of MSL.SignificanceThis study validates a fully automatic method for scoring arousals in PSGs.
- Published
- 2020