1. Prediction of Indian summer monsoon in short to medium range time scale with high resolution global forecast system (GFS) T574 and T382
- Author
-
V. R. Durai and S. K. Roy Bhowmik
- Subjects
Troposphere ,Global Forecast System ,Atmospheric Science ,Quantitative precipitation estimation ,Meteorology ,Precipitable water ,Climatology ,Spatial ecology ,Environmental science ,Forecast skill ,Humidity ,Monsoon - Abstract
Performance of national centers for environmental prediction based global forecast system (GFS) T574/L64 and GFS T382/L64 over Indian region has been evaluated for the summer monsoon season of 2011. The real-time model outputs are generated daily at India Meteorological Department, New Delhi for the forecasts up to 7 days. Verification of rainfall forecasts has been carried out against observed rainfall analysis. Performance of the model is also examined in terms of lower tropospheric wind circulation, vertical structure of specific humidity and precipitable water content. Case study of a monsoon depression is also illustrated. Results obtained show that, in general, both the GFS T382 and T574 forecasts are skillful to capture climatologically heavy rainfall regions. However, the accuracy in prediction of location and magnitude of rainfall fluctuates considerably. The verification results, at the spatial scale of 50 km resolution, in a regional spatial scale and country as a whole, in terms of continuous skill score, time series and categorical statistics, have demonstrated superiority of GFS T574 against T382 over Indian region. Both the model shows bias of lower tropospheric drying and upper tropospheric moistening. A bias of anti-cyclonic circulation in the lower tropospheric level lay over the central India, where rainfall as well as precipitable water content shows negative bias. Considerable differences between GFS T574 and T382 are noticed in the structure of model bias in terms of lower tropospheric wind circulation, vertical structure of specific humidity and precipitable water contents. The magnitude of error for these parameters increases with forecast lead time in both GFS T574 and T382. The results documented are expected to be useful to the forecasters, monsoon researchers and modeling community.
- Published
- 2013
- Full Text
- View/download PDF