1. Abstract 308: Reductive Carboxylation Contributes to Cardiac Adaptation in Response to the Oncometabolite D2-hydroxyglutarate
- Author
-
Heidi Vitrac, Anja Karlstaedt, Rebecca Salazar, Heinrich Taegtmeyer, Ralph J. DeBerardinis, Benjamin D. Gould, and Brandon Faubert
- Subjects
Physiology ,Chemistry ,Reductive carboxylation ,Adaptation ,Cardiology and Cardiovascular Medicine ,Cell biology - Abstract
Cancer cells rewire metabolism to support tumor growth and proliferation. In isocitrate dehydrogenase (IDH) 1 and 2 mutant tumors, increased plasma levels of the oncometabolite D-2-hydroxyglutarate (D2-HG) are associated with systemic effects, including myopathy. D2-HG causes inhibition of alpha-ketoglutarate dehydrogenase (AKGDH), which is associated with reduced cardiac contractile function. How tumor cells influence the metabolism of cardiomyocytes remains mostly unknown. Specific cancer cells use glutamine-dependent reductive carboxylation to circumvent defective mitochondrial metabolism by producing citrate and acetyl-CoA for lipid synthesis, which tumors require for growth. Here, we explore the hypothesis that inhibition of AKGDH by the oncometabolite D2-HG increases glutamine-dependent reductive carboxylation in the heart. We combined ex vivo rat heart perfusions with mass-spectrometry-based stable isotope tracer studies and in silico metabolic flux analysis. In response to D2-HG-mediated inhibition of AKGDH, we observed an increased reductive carboxylation of alpha-ketoglutarate to citrate rather than oxidative decarboxylation. This pathway increases glutamine uptake and glutamine-derived citrate formation in both working rat heart perfusions and cultured adult mouse ventricular cardiomyocytes. When we perfused rat hearts with 13C-labelled D2-HG, we observed a similarly increased formation of citrate. To identify which IDH isoform is responsible for redirecting carbon flux, we modulated IDH1, 2, and 3 in adult mouse ventricular cardiomyocytes using siRNAs. Reduced expression of IDH1 impaired reductive formation of citrate. Importantly, we observed a significant correlation between reductive citrate formation and epigenetic modifications of histones, including increased histone 3 lysine 9 acetylation and di-methylation. To explore these observations, we conducted ChIP-sequencing and identified distinct transcriptional remodeling. Taken together, we demonstrate how oncometabolic stress in the heart causes redirection of central carbon metabolism via reductive carboxylation, and provide evidence of how reductive-citrate formation may induce epigenetic modifications in the heart.
- Published
- 2020
- Full Text
- View/download PDF