1. Sea surface temperature record from the north of the East China Sea since late Holocene.
- Author
-
Li Guangxue, Sun Xiaoyan, Liu Yong, Torsten, Bickert, and Ma Yanyan
- Subjects
SEA surface microlayer ,KETONES ,TEMPERATURE ,HOLOCENE stratigraphic geology ,PLEISTOCENE stratigraphic geology ,MONSOONS - Abstract
Using the alkenone paleotemperature index U
37 k , a high-resolution sea surface temperature (SST) record since 3600 a BP was reconstructed from the mud area in the north of the East China Sea. Combining with the grain size distribution curve of sensitive grain size group, which may reflect the East Asia Winter Monsoon activity, the palaeoenvironmental evolution cycle throughout the late Holocene in the area was obtained. The marine environment evolution during the last 3600 years displays a five-stage trend. (1) Temperature descending period from 0.85 cal. ka BP to present. The maximum temperature decrease amplitude is 2°C. The winter monsoon intensified and 'Little Ice Age' were recorded in this period. (2) Warming period from 1.90 to 0.85 cal. ka BP. The mean temperature increase amplitude is 0.8°C.. The Sui-Tang warming period was recorded at about 0.85-1.35 cal. ka BP and a prominent cooling event was recorded at 1.4 cal. ka BP in this period. (3) Temperature descending period from 2.55 to 1.90 cal. ka BP. Temperature cooling amplitude is 0.9°C.. This period is coincident with an integrated temperature circle recorded in the Antarctic ice core, with the temperature changes from a slow cooling stage to a rapid warming stage. (4) Temperature comparatively stable with a little ascending period from 3.2 to 2.55 cal. ka BP. Temperature warming amplitude is 0.3°C.. This period is coincident with the temperature fluctuant ascending period recorded in Antarctic ice core. (5) Temperature comparatively stable with little descending period from 3.6 to 3.2 cal. ka BP. This period corresponds with the temperature fluctuant cooling period recorded in Antarctic ice core. Basically, those five periods were coincident with the Antarctic ice core record. During the global cooling stage, the SST change in the continental shelf sea can be adjusted simultaneously. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF