1. Biointeraction of cerium oxide and neodymium oxide nanoparticles with pure culture Methylobacterium extorquens AM1.
- Author
-
Soleimanifar M and Rodriguez-Freire L
- Subjects
- Neodymium, Methylobacterium extorquens, Cerium, Metals, Rare Earth, Nanoparticles
- Abstract
Rare earth elements (REE) are valuable raw materials in our modern life. Extensive REE application from electronic devices to medical instruments and wind turbines, and non-uniform distribution of these resources around the world, make them strategically and economically important for countries. Current REE physical and chemical mining and recycling methods could have negative environmental consequences, and biologically-mediated techniques could be applied to overcome this issue. In this study, the bioextraction of cerium oxide and neodymium oxide nanoparticles (REE-NP) by a pure culture Methylobacterium extorquens AM1 (ATCC®14718™) was investigated in batch experiments. Results show that adding up to 1000 ppm CeO
2 or Nd2 O3 nanoparticles (REE-NP) did not seem to affect the bacterial growth over 14-days contact time. Effect of methylamine hydrochloride as an essential electron donor and carbon source for microbial oxidation and growth was also observed inasmuch as there was approximately no growth when it does not exist in the medium. Although very low concentrations of cerium and neodymium in the liquid phase were measured, concentrations of 45 μg/gcell Ce and 154 μg/gcell Nd could be extracted by M. extorquens AM1. Furthermore, SEM-EDS and STEM-EDS confirmed surface and intracellular accumulation of nanoparticles. These results confirmed the ability of M. extorquens to accumulate REE nanoparticles., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF