2,023 results on '"Bioreactors"'
Search Results
2. Bioremediation strategies against pesticides: An overview of current knowledge and innovations.
- Author
-
Martínez-Burgos, Walter José, Porto de Souza Vandenberghe, Luciana, Murawski de Mello, Ariane Fátima, de Carvalho, Júlio César, Valladares-Diestra, Kim Kley, Manzoki, Maria Clara, Scapini, Thamarys, Pozzan, Roberta, Liew, Rocky Keey, Thomaz-Soccol, Vanete, and Soccol, Carlos Ricardo
- Subjects
- *
PESTICIDE pollution , *POLLUTION , *SOIL pollution , *MICROBIAL enzymes , *WATER pollution , *PESTICIDES - Abstract
Pesticides pose significant risks to both human health, such as cancer, neurological disorders, and endocrine disruption, and ecosystems, through the destruction of beneficial insects, contamination of soil and water, and impact on non-target species. In the face of escalating pesticide pollution, there is an urgent need for multifaceted approaches to address the issue. Bioremediation emerges as a potent tool in the environmental pollution mitigation arsenal. Ideally aiming for the complete decomposition of pesticides into harmless molecules, bioremediation encompasses diverse approaches - from bioabsorption, bioadsorption, and biotransformation using enzymes and nanoenzymes to comprehensive degradation facilitated by microorganisms such as bacteria, fungi, macro- and microalgae, or phytoremediation. Exploring nature's biodiversity offers a promising avenue to find solutions to this pressing human-induced problem. The acceleration of biodegradation necessitates identifying and developing efficient organisms, achieved through bioprospection and targeted modifications. Specific strategies to enhance process efficiency and throughput include optimizing biomass production, strategic inoculation in diverse environments, and employing bioreactor systems for processing heavily contaminated waters or soils. This comprehensive review presents various bioremediation approaches, emphasizing the importance of microorganisms' exploration and new technologies development, including current innovations and patents to effectively combat pesticide pollution. Furthermore, challenges regarding the effective implementation of these technologies are also addressed. [Display omitted] • Insecticide bioremediation mediated by bacteria, algae, fungi, and plants are highlighted. • Microbial genetic engineering and immobilization can enhance bioremediation. • In situ (wetland) and ex-situ (bioreactor) technologies are discussed for bioremediation. • Strategic inoculation and advanced bioreactor systems lead to process efficiency. • Utilizing biomass post-bioremediation remains a persistent challenge in the field. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Uncovering the mechanisms of ethanol stimulation on magnetite-enhanced anaerobic process treating oxytetracycline contained wastewater.
- Author
-
Ma K, Wang W, Meng L, Zhao Y, Li Y, and Li X
- Subjects
- Anaerobiosis, Waste Disposal, Fluid methods, Bioreactors, Water Pollutants, Chemical metabolism, Ethanol metabolism, Oxytetracycline pharmacology, Wastewater chemistry, Ferrosoferric Oxide, Methane metabolism
- Abstract
Magnetite has been proved to facilitate direct interspecies electron transfer (DIET)-based syntrophys and might alleviate inhibitory effects of antibiotics in anaerobic digestion (AD), while feeding ethanol was an effective approach to enrich the DIET partners. However, most of the existing studies were conducted at fixed ethanol concentration, few attentions were paid on the effects of differential ethanol proportion on AD, the underlying roles and mechanisms of ethanol stimulation remains unclear. This study systematically investigated the impact of ethanol stimulation on anaerobic processes treating oxytetracycline (OTC)-contaminated wastewater at varying proportions (20%, 50%, and 80%, based on equivalent COD value). In the presence of magnetite, ethanol stimulation promoted the methane production from 244.9 mL/g COD to a maximum 434.2 mL/g COD, with the most pronounced enhancement observed at high ethanol proportions. In particular, the average methane production obtained at 50% and 80% ethanol was 328.5 and 297.7 mL/g COD, respectively, whereas the enhancement of 20% ethanol stimulation was relatively limited. Concurrently, more stable COD removal and OTC reduction was noted in the existence of both magnetite and high ethanol proportions. Microbial analysis revealed the pivotal roles of Methanosaeta, alongside the predominance of Methanobacterium, in regulating COD conversion and driving methanogenesis through the CO
2 reduction pathway. Notably, high ethanol proportions fostered the enrichment of exoelectrogens (Geobacter, Desulfovibrio) in the magnetite-amended system, accompanied by the up-regulation of genes involved in organic metabolism pathways. Further investigation of functional genes highlighted the prevalence of pilA enrichment in the magnetite-amended system at low ethanol proportions, whereas omcS became more abundant at high ethanol proportions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. A new approach on the management of landfill leachate reverse osmosis concentrate: Solar distillation coupled with struvite recovery and biological treatment.
- Author
-
Tsompanoglou K, Iliopoulou A, Mastoras P, and Stasinakis AS
- Subjects
- Distillation methods, Ammonium Compounds, Microalgae, Ammonia chemistry, Ammonia analysis, Bioreactors, Nitrogen analysis, Waste Disposal Facilities, Biodegradation, Environmental, Struvite chemistry, Water Pollutants, Chemical analysis, Osmosis, Waste Disposal, Fluid methods
- Abstract
The management of reverse osmosis (RO) concentrate remains a challenging task for operators of Landfill Leachates Treatment Plants. In this article we suggest an integrated treatment scheme for RO concentrate that combines solar distillation, struvite precipitation to reduce ammonia content of the distillate and biological treatment of the supernatant either with mixed cultures of bacteria or with microalgae. Experiments in a pilot-scale solar still, equipped with underfloor heating system, showed that the production rate of the distillate ranged up to 3.17 L/d m
2 . The distillate was characterized by elevated average concentrations of ammonium nitrogen; 2028 mg/L and 1358 mg/L in the two experiments conducted, respectively. A decreasing trend on concentrations of NH4 + -N was noticed during these experiments, while the opposite was observed for COD. Struvite recovery experiments showed that the optimum Mg:NH4 :PO3 ratio was that of 2:1:5.8. Under these conditions, the NH4 + -N removal reached 88%. Further treatment of the process supernatant into a 4-L hybrid sequencing batch reactor with biocarriers and activated sludge achieved NH4 + -N removal higher than 98% in Phases C and D, where 450 and 600 mL of supernatant were added, respectively. Similar removal was also observed in a 2-L bioreactor with microalgae Chlorella sorokiniana when 150 mL of struvite supernatant were added (Phase B) while further increase of the amount of added supernatant to 200 mL resulted to a sharp stop of NH4 + -N consumption (Phase C). Calculations for a landfill serving 20,000 inhabitants and a daily RO concentrate production of 6 m3 /d showed that the required area for the construction of the solar still was 1893 m2 and the volumes of the hybrid and the microalgae reactor were 54 m3 and 60 m3 , respectively. The recovered solid material of struvite process, after characterization for heavy metals and organic micropollutants, could be reused to the fertilizers industry., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. Per- and polyfluoroalkyl substances behavior: Insights from autothermal thermophilic aerobic digestion - Storage nitrification-denitrification reactors.
- Author
-
Alukkal CR, Lee LS, and Staton K
- Subjects
- Bioreactors, Aerobiosis, Fluorocarbons analysis, Fluorocarbons metabolism, Nitrification, Water Pollutants, Chemical analysis, Water Pollutants, Chemical metabolism, Denitrification
- Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as significant environmental contaminants due to their persistence, bioaccumulative properties, and potential adverse impacts on health and ecosystems. Water Resource Recovery Facilities (WRRFs) play a crucial role in the management of PFAS, given their widespread presence in consumer products and subsequent reintroduction into the environment. This study investigated the dynamics of PFAS within the solids stream treatment processing that utilized autothermal thermophilic aerobic digestion (ATAD) followed by a storage nitrification-denitrification reactor (SNDR). PFAS analysis included 60 PFAS analyzed via liquid chromatography-triple quadrupole time-of-flight mass spectrometry of pre-ATAD, post-ATAD, and post-SNDR samples. Complexities such as volatile solids loss during the treatment processes were considered in assessing the effect of ATAD and SNDR on PFAS concentrations. Significant changes were observed in the relative contributions of various PFAS classes throughout the treatment processes due to biotransformation; similar changes were reflected in both 2019 and 2021. The relative contribution of perfluoroalkyl alkyl acids (PFAAs) increased while phosphorus-containing PFAS (e.g., di-substituted polyfluoroalkyl phosphate esters) and fluorotelomer carboxylic acids decreased. Shorter-chain PFAAs were enriched during ATAD, whereas most PFAS increased during SNDR except diPAPs and FTCAs, reflecting treatment conditions' impact. Overall, minor decreases in total PFAS concentrations during ATAD as well as SNDR were observed and hypothesized to be due to enhanced biotransformation to ultra-short PFAS that were not quantified. Even with up to 60 PFAS quantified in the samples, PFAS accounted for <1% of the total fluorine with <2% of that total fluorine being fluoride prompting interest in additional exploration., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
6. Optimizing operation strategy to improve storage of intracellular carbon sources in anaerobic/oxic/anoxic system: Enhanced nitrogen removal by endogenous denitrification.
- Author
-
Tang C, Yue Q, Liu H, Dang H, Lv W, Li X, and Chen Y
- Subjects
- Anaerobiosis, Oxygen metabolism, Oxygen analysis, Water Pollutants, Chemical metabolism, Water Pollutants, Chemical analysis, Polyhydroxyalkanoates metabolism, Nitrogen metabolism, Carbon metabolism, Denitrification, Wastewater chemistry, Waste Disposal, Fluid methods, Bioreactors
- Abstract
Endogenous denitrification (ED) can make full use of the carbon sources and avoid replenishment of it. However, strengthening the storage of intracellular carbon sources is an important factor in improving ED efficiency. In this study, employed batch experiments using real domestic wastewater in the anaerobic/oxic (A/O) process. The anaerobic and oxic processes were run for 4 h under ambient conditions with the dissolved oxygen (DO) concentrations in the oxic stage controlled at 0.5, 1.0, 1.5, and 3.0 mg/L, respectively. The results showed that the content of poly-β-hydroxyalkanoates (PHA) reached its peak at 60 min (1.25 mmolC/L). And with DO concentrations of 1.5 mg/L, the contents of glycogen (Gly) were 27.74 mmolC/L. Subsequently, the AOA-SBR was established to investigate its effect on the long-term nitrogen removal performance of domestic wastewater by optimizing the anaerobic time and DO concentrations. The results showed that at an anaerobic time of 60 min and DO concentration of 1.5 mg/L, the storage of the intracellular carbon sources was highest and the total nitrogen (TN) removal efficiency increased to 82.12%. In addition, Candidatus Competibacter dominated gradually in the system as the strategy was optimized., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
7. Effect of secondary and tertiary wastewater treatment methods on opioids and the subsequent environmental impact of effluent and biosolids.
- Author
-
Simpson J, Simpson BS, and Gerber C
- Subjects
- Bioreactors, Halogenation, Ultraviolet Rays, Wastewater chemistry, Analgesics, Opioid analysis, Water Pollutants, Chemical analysis, Waste Disposal, Fluid methods, Sewage chemistry
- Abstract
Opioids are widely distributed, potent prescription analgesics that are known to be diverted for illicit use. Their prevalence of use is reflected by high concentrations of parent compounds and/or metabolites found in samples collected from wastewater treatment plants. Given that treatment byproducts enter the environment through several routes, the consequences of insufficient removal by treatment methods include unwanted environmental exposure and potential to disrupt ecosystems. Activated sludge treatment has been widely investigated for a large suite of prescription opioids but the same cannot be said for UV and chlorination. Additionally, the biosolid cycle of opioids has been overlooked previously. This study aimed to determine the extent to which secondary and tertiary wastewater treatment methods remove opioids from influent, and the associated environmental exposure for those persistent, as well as the fate of opioids in biosolids. Membrane bioreactor treatment proved effective for natural and semi-synthetic opioids while the effect of UV treatment was negligible. Chlorination was the most effective treatment method resulting in effluent with concentrations below theoretical predicted no-effect concentration. Biosolids are not subjected to any additional biological or chemical treatment after membrane bioreactor treatment and the levels detected in biosolid used as fertiliser had several opioids at potentially hazardous concentrations, indicated by a QSAR theoretical model. This data indicates a potential issue regarding the treatment process of biosolids and reliance on chlorination for effluent treatment that should be investigated in other treatment plants., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. Removal of organic matter from food wastewater using anaerobic digestion at low temperatures enhanced by exogenous signaling molecule N-hexanoyl-homoserine lactone enhancement: Insight to extracellular polymeric substances and key functional genes.
- Author
-
Xian Y, Lu Y, Wang Z, Lu Y, Han J, Zhou G, Chen Z, Lu Y, and Su C
- Subjects
- Anaerobiosis, Sewage chemistry, Sewage microbiology, Waste Disposal, Fluid methods, Cold Temperature, Bioreactors, Food, Biological Oxygen Demand Analysis, Wastewater chemistry, 4-Butyrolactone analogs & derivatives, Extracellular Polymeric Substance Matrix metabolism
- Abstract
This experiment aimed to study the effects of adding the exogenous signaling molecule N-hexanoyl-homoserine lactone (C6-HSL) on the anaerobic digestion of food wastewater at low temperature (15 °C). Daily addition of 0.4 μmol C6-HSL increased the average chemical oxygen demand removal from 45.98% to 94.92%, while intermittent addition (adding 2 μmol C6-HSL every five days) increased it from 45.98% to 72.44%. These two modes of C6-HSL addition increased protease and acetate kinase activity by 47.99%/8.04% and 123.26%/127.91% respectively, and increased coenzyme F
420 concentrations by 15.79% and 63.16%, respectively. The regulation of loosely bound extracellular polymeric substances synthesis was influenced by C6-HSL, which increased protein and polysaccharide content in sludge. The relative abundance of Firmicutes and Bacteroidetes increased following addition of C6-HSL. After continuous addition of C6-HSL, the relative abundance of related functional genes such as amy, apgM, aceE, and accC increased, indicating that methanogens obtained sufficient substrate. The abundance of glycolysis-related functional genes such as glk, pfk, pgi, tpiA, gap, pgk, gpmA, eno, and pyk increased after the addition of C6-HSL, ensuring the efficient transformation and absorption of organic matter by anaerobic sludge at low temperatures. This study provides new comprehensive insights into the mechanism behind the enhancement of food wastewater anaerobic digestion by C6-HSL at low temperature., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
9. Enhanced wastewater treatment with an AnF-AAO system for improved internal carbon source utilization.
- Author
-
Jiang Z, Ao Z, Qiu L, Li W, Yu J, Xia Z, Qi L, Liu G, and Wang H
- Subjects
- Anaerobiosis, Biological Oxygen Demand Analysis, China, Biodegradation, Environmental, Hydrolysis, Fatty Acids, Volatile metabolism, Fatty Acids, Volatile analysis, Carbon metabolism, Wastewater chemistry, Bioreactors, Waste Disposal, Fluid methods, Phosphorus analysis, Nitrogen analysis, Nitrogen metabolism, Sewage chemistry
- Abstract
The main challenge in removing nutrients from municipal wastewater in China is the lack of available carbon sources. While hydrolysis acidification tanks can improve wastewater biodegradability by effectively utilizing internal carbon sources, high sludge concentrations are difficult to control in traditional tank variants. In this study, an innovative anaerobic filter (AnF) hydrolysis acidification reactor composed of a continuously stirred tank reactor (CSTR) and cloth media filter was designed to regulate and maintain high sludge concentrations in the hydrolysis acidifier. The reactor was used as a pretreatment unit for the anaerobic/anoxic/oxic (AAO) units and combined into an AnF-AAO system to explore the effectiveness of internal carbon source utilization in wastewater. The results indicate that as the sludge concentration in the hydrolysis acidifier increased, the hydrolysis and acidification processes became more efficient. The optimal sludge concentration was 40 g/L, which significantly increased the production of soluble chemical oxygen demand and volatile fatty acids. Above this concentration, the efficiency decreased. Compared to traditional AAO processes, the AnF-AAO system achieved superior total nitrogen and phosphorus removal with shorter hydraulic retention times and reduced sludge production by a significant amount of 35%. Due to its capacity for enhancing internal carbon source utilization, the AnF-AAO system constitutes a promising approach for sustainable urban wastewater treatment., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Hongchen Wang reports financial support was provided by Renmin University of China School of Environment and Natural Resource. Hongchen Wang reports a relationship with Renmin University of China School of Environment and Natural Resource that includes: employment., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
10. Investigation of intermittent aeration and oxic settling anaerobic process combination for nitrogen removal and sewage sludge reduction.
- Author
-
Bosco Mofatto PM, Cosenza A, Di Trapani D, and Mannina G
- Subjects
- Anaerobiosis, Wastewater chemistry, Nitrification, Carbon metabolism, Pilot Projects, Sewage chemistry, Nitrogen metabolism, Bioreactors, Waste Disposal, Fluid methods
- Abstract
A pilot plant with a conventional activated sludge (CAS) system with intermittent aeration (IA) was monitored. The system was configured as an Oxic Settling Anaerobic (OSA) process with the insertion of one anaerobic side-stream reactor (ASSR). The pilot plant was fed with real wastewater and an intensive experimental campaign was carried out including sludge minimization, nitrogen and carbon removal, GHG emissions and biokinetic parameters. The experimental campaign was divided into periods: Period I, II, and III. In Periods I and II, the ASSR reactor was operated with two different hydraulic retention times (HRT), 4 and 6 h, with an aeration/non-aeration ratio of 30 min/30 min. In Period III, the HRT in the anaerobic reactor was the same as in Period II. In contrast, the biological reactor's aerated/non-aerated ratio was increased to 40 min/20 min. Results demonstrated that combining IA and OSA might be effective in the reduction of excess sludge production. The yield coefficient decreased from Period I to Period II (Y
obs from 0.41 to 0.25 gTSS gCOD-1 , in Period I and II, respectively). Nevertheless, the HRT increase in the ASSR compromised the system performance regarding nitrification and greenhouse gas emissions and worsened the sludge settleability. However, the increase in the aeration duration was beneficial in restoring the system's nitrification and denitrification ability and carbon footprint. The lowest carbon footprint was obtained during Period III (6.8 kgCO2 /d)., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
11. Developments of electrospinning technology in membrane bioreactor: A review.
- Author
-
Han J, Xie N, Ju J, Zhang Y, Wang Y, and Kang W
- Subjects
- Wastewater chemistry, Waste Disposal, Fluid methods, Water Purification methods, Bioreactors, Membranes, Artificial, Biofouling
- Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
12. Enhancement of hydrazine accumulation in anammox bioreactors.
- Author
-
Sari, Tugba, Akgul, Deniz, and Mertoglu, Bulent
- Subjects
- *
HYDRAZINES , *BIOREACTORS , *MANUFACTURING processes , *BIOMASS , *BIOACCUMULATION - Abstract
The role of hydrazine (N 2 H 4) in anammox metabolism has been widely studied; however, studies on N 2 H 4 biosynthesis by anammox bacteria are limited in the literature. In this context, the current research aims to investigate the enhancement of biological N 2 H 4 production in the anammox process in a long-term manner. The experimental studies started with the optimization of the operating conditions to achieve maximum N 2 H 4 accumulation. Under favorable conditions (pH = 8.97 ± 0.08; T = 35.5 ± 0.5 °C; initial hydroxylamine dose = 1.46 ± 0.01 mM), 17.16 ± 0.64 mg L−1 of N 2 H 4 accumulated in the batch systems. The continuity of N 2 H 4 bioproduction was then evaluated by long-term observations. A continuous flow bioreactor was operated in four consecutive manipulated periods under optimized conditions. In the long-term operated bioreactor, 55.10 ± 0.30 mg L−1 N 2 H 4 was accumulated at optimal conditions, which was 2.5 times higher than reported in the literature. Although manipulation of the bioreactor operating conditions initially resulted in a significant increase in N 2 H 4 bioaccumulation, it subsequently caused a severe deterioration in anammox activity. However, this could be mitigated by increasing the biomass concentration in the anammox systems. In addition, the relative abundance of Candidatus Kuenenia decreased by 1.88% throughout the long-term operation. [Display omitted] • Operating conditions were optimized to maximize N 2 H 4 bioaccumulation in the system. • N 2 H 4 accumulation was positively correlated to NH 2 OH utilization in the system. • N 2 H 4 accumulation increased >1000 times than startup under manipulated conditions. • Continuity of N 2 H 4 accumulation was not observed in long-term operated SBR. • Ca. Kuenenia was the sole anammox genus in the bioreactor throughout the operation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Irons differently modulate bacterial guilds for leading to varied efficiencies in simultaneous nitrification and denitrification (SND) within four aerobic bioreactors.
- Author
-
Zhang, Xinyu, Huang, Chengli, Sui, Weikang, Wu, Xiaogang, and Zhang, Xiaojun
- Subjects
- *
NITRIFICATION , *DENITRIFICATION , *BIOREACTORS , *IRON , *BACTERIAL communities , *WASTEWATER treatment - Abstract
As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus , along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment. [Display omitted] • Iron modulated composition and abundance of both nitrifers and denitrifiers in aerobic reactors. •Higher than 95% nitrification efficiency attained in NCR, Fe2R and Fe3R. •Different forms of iron addition shaped distinct bacterial functional guilds. •Zero-valent iron facilitate aerobic denitrification and inhibit nitrification. •Zero-valent iron addition promoted the nitrate nitrogen removal and high SND efficiency (>90%). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
14. How to develop a bio-based phosphorus mining strategy for eutrophic marine sediments: Unlocking native microbial processes for anaerobic phosphorus release.
- Author
-
Kendir Cakmak, Ece, Chen, Chen, Cuartero, Maria, and Cetecioglu, Zeynep
- Subjects
- *
PHOSPHORUS in water , *PHOSPHORUS , *SULFATE-reducing bacteria , *TWO-way analysis of variance , *TEMPERATURE effect , *MARINE sediments , *FATTY acids , *BIOREACTORS - Abstract
This study examined the anaerobic release of phosphorus (P) from two different Baltic Sea sediments (B and F), focusing on the impact of initial concentration of externally introduced waste-derived volatile fatty acids (VFA) as the carbon source, temperature, pH, and mixing conditions. The first batch bioreactor set was operated to demonstrate the effect of VFA on anaerobic P release at different concentrations (1000–10000 mg/L as COD) at 20 °C. A notable P release of up to 15.85 mg/L PO 4 –P was observed for Sediment B at an initial carbon concentration of 10000 mg COD/L. However, VFA consumption in the bioreactors was minimal or no subsequent. The second batch bioreactor set was carried out to investigate the effect of temperature (20 °C-35 °C), pH (5.5, 7.0 and 8.5) and mixing conditions on P release by introducing lower initial carbon concentration (1000 mg COD/L) considering the potential risk for VFA accumulation in the bioreactors. Maximum P releases of 4.4 mg/L and 3.5 mg/L were for Sediment B and Sediment F, respectively. Two-way ANOVA tests revealed that the operation time and pH and their interactions were statistically significant (p < 0.05) for both sediments while the effect of mixing was not statistically significant. Most of the sulfate was reduced during batch bioreactor operation and Desulfomicobiaceae became dominant among other sulfate-reducing bacteria (SRB) possibly shows the importance of SRB in terms of anaerobic P release. This study gives an insight into future implementations of phosphorus mining from eutrophic environment under anaerobic conditions. [Display omitted] • Introducing waste derived VFA to marine sediment triggered anaerobic P release. • Temperature, pH and HRT affected P release efficiencies. • Desulfomicobiaceae were found as dominant SRB in the batch bioreactors. • Low P releases could be attributed to the complex nature of marine sediment. • PAOs were not enriched during batch bioreactor operation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
15. Artificial neural network modeling for the prediction, estimation, and treatment of diverse wastewaters: A comprehensive review and future perspective.
- Author
-
Ibrahim M, Haider A, Lim JW, Mainali B, Aslam M, Kumar M, and Shahid MK
- Subjects
- Bioreactors, Phosphorus analysis, Biological Oxygen Demand Analysis, Nitrogen analysis, Water Purification methods, Neural Networks, Computer, Wastewater chemistry, Waste Disposal, Fluid methods, Water Pollutants, Chemical analysis
- Abstract
The application of artificial neural networks (ANNs) in the treatment of wastewater has achieved increasing attention, as it enhances the efficiency and sustainability of wastewater treatment plants (WWTPs). This paper explores the application of ANN-based models in WWTPs, focusing on the latest published research work, by presenting the effectiveness of ANNs in predicting, estimating, and treatment of diverse types of wastewater. Furthermore, this review comprehensively examines the applicability of the ANNs in various processes and methods used for wastewater treatment, including membrane and membrane bioreactors, coagulation/flocculation, UV-disinfection processes, and biological treatment systems. Additionally, it provides a detailed analysis of pollutants viz organic and inorganic substances, nutrients, pharmaceuticals, drugs, pesticides, dyes, etc., from wastewater, utilizing both ANN and ANN-based models. Moreover, it assesses the techno-economic value of ANNs, provides cost estimation and energy analysis, and outlines promising future research directions of ANNs in wastewater treatment. AI-based techniques are used to predict parameters such as chemical oxygen demand (COD) and biological oxygen demand (BOD) in WWTP influent. ANNs have been formed for the estimation of the removal efficiency of pollutants such as total nitrogen (TN), total phosphorus (TP), BOD, and total suspended solids (TSS) in the effluent of WWTPs. The literature also discloses the use of AI techniques in WWT is an economical and energy-effective method. AI enhances the efficiency of the pumping system, leading to energy conservation with an impressive average savings of approximately 10%. The system can achieve a maximum energy savings state of 25%, accompanied by a notable reduction in costs of up to 30%., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
16. Innovative hyper-thermophilic aerobic submerged membrane distillation bioreactor for wastewater reclamation.
- Author
-
Le HQ, Duong CC, Chang HM, Nguyen NC, Chien IC, Ngo HH, and Chen SS
- Subjects
- Phosphorus, Salinity, Membranes, Artificial, Water Purification methods, Aerobiosis, Ammonia analysis, Biomass, Temperature, Bioreactors, Wastewater chemistry, Distillation methods, Waste Disposal, Fluid methods
- Abstract
For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 μS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Crown Copyright © 2024. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. Optimization of biological nitrogen removal in full-scale municipal WWTPs using activated sludge model simulation.
- Author
-
Cheng HH, Huang PW, and Whang LM
- Subjects
- Water Pollutants, Chemical analysis, Kinetics, Biological Oxygen Demand Analysis, Bioreactors, Computer Simulation, Models, Theoretical, Nitrogen analysis, Sewage chemistry, Waste Disposal, Fluid methods, Wastewater chemistry
- Abstract
The study evaluated the most efficient biological nitrogen removal (BNR) process in four full-scale municipal wastewater treatment plants (WWTPs) by using BioWin, a simulation software based on the activated sludge model (ASM). A series of experiments were conducted to determine the kinetic and stoichiometric parameters for the ASM. Results indicated that autotrophic maximum specific growth rates in the studied WWTPs were generally higher compared to previous findings, likely due to their low COD/N ratios, emphasizing the importance of local parameterization. Continuous water quality monitoring in each plant was employed to validate the model. Dynamic simulation results indicated that the error remained within an acceptable range, with a mean relative error of less than 20%, confirming the reliability of ASM parameters derived from batch experiments. Subsequently, various operational scenarios were analyzed to determine the optimal BNR process for each plant, considering influent flow rate, internal recycling, and methanol addition. Simulation outcomes suggested that O/A (oxic/anoxic) operation is preferable for plants with low organic content (COD = 60-110 mg/L), considering both operational costs and total nitrogen removal rate. Conversely, A/O (anoxic/oxic) operation might be advantageous for plants with higher influent organic matter (COD = 200 mg/L)., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
18. Impacts of micron-sized aeration bubble on sludge properties and hydraulic dynamics in relation to membrane fouling alleviation.
- Author
-
Sun H, Qin J, Yu W, Zhao H, and Wang H
- Subjects
- Biofouling prevention & control, Microbubbles, Viscosity, Sewage chemistry, Membranes, Artificial, Bioreactors, Particle Size, Waste Disposal, Fluid methods
- Abstract
This investigation elucidates the influence of micron-scale aeration bubbles on the improvement of anti-fouling characteristics within submerged membrane bioreactors (sMBRs). A systematic examination of sludge properties, hydraulic dynamics, and fouling tendencies revealed that the application of microbubble aeration, specifically at dimensions of 100 μm, 80 μm, and 30 μm, significantly reduced sludge electrostatic repulsion and augmented particle size distribution, as opposed to the utilization of coarse bubble aeration of 1 mm. Notably, the employment of 100 μm bubbles achieved a significant reduction in the proportion of smaller particles (<10 μm) and sludge viscosity, thereby facilitating a more homogenous and vigorous turbulence at the membrane interface. These optimized conditions were instrumental in the substantial reduction of membrane fouling, which was corroborated by the diminished rate of fouling, reduced resistance accumulation, and lesser foulant deposition. The investigation identified sludge particle size, turbulent kinetic energy, and shear stress as the predominant factors influencing the development of membrane fouling. The findings underscore the pronounced advantages of employing 100 μm-sized bubbles in aeration strategies, providing enhanced understanding for the optimization of aeration parameters to improve sMBR efficiency and maintenance., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
19. Synergism of floated paperboard sludge cake /sewage sludge for maximizing biomethane yield and biochar recovery from digestate: A step towards circular economy.
- Author
-
Hafez RM, Tawfik A, Hassan GK, Zahran MK, Younes AA, Ziembińska-Buczyńska A, Gamoń F, and Nasr M
- Subjects
- Anaerobiosis, Bioreactors, Waste Disposal, Fluid methods, Biofuels, Paper, Sewage chemistry, Charcoal chemistry, Methane, Fatty Acids, Volatile analysis
- Abstract
Anaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch experimental assays were conducted at different SS:PS mixing ratios of 70:30, 50:50, 30:70, and 20:80 (w/w), and their anaerobic co-digestion performances were compared to the mono-digestion systems at 35 ± 0.2 °C for 45 days. The highest methane yield (MY) of 241.68 ± 14.81 mL/g COD
removed was obtained at the optimum SS:PS ratio of 50:50 (w/w). This experimental condition was accompanied by protein, carbohydrate, and VFA conversion efficiencies of 47.3 ± 3.2%, 46.8 ± 3.2%, and 56.3 ± 3.8%, respectively. The synergistic effect of SS and PS cake encouraged the dominance of Bacteroidota (23.19%), Proteobacteria (49.65%), Patescibacteria (8.12%), and Acidovorax (12.60%) responsible for hydrolyzing the complex organic compounds and converting the VFAs into biomethane. Further, the solid fraction of digestate was subjected to thermal treatment at a temperature of 500 °C for 2.0 h, under an oxygen-limited condition. The obtained biochar had a yield of 0.48 g/g dry digestate, and its oxygen-to-carbon (O/C), carbon-to-nitrogen (C/N), and carbon-to-phosphorous (C/P) ratios were 0.55, 10.23, and 16.42, respectively. A combined anaerobic co-digestion/pyrolysis system (capacity 50 m3 /d) was designed based on the COD mass balance experimental data and biogenic CO2 market price of 22 USD/ton. This project could earn profits from biogas (12,565 USD/yr), biochar (6641 USD/yr), carbon credit (8014 USD/yr), and COD shadow price (6932 USD/yr). The proposed project could maintain a payback period of 6.60 yr. However, further studies are required to determine the associated life cycle cost model that is useful to validate the batch experiment assumptions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
20. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor.
- Author
-
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, and Zhang J
- Subjects
- Anaerobiosis, Sewage microbiology, Biofouling prevention & control, Water Purification methods, Bioreactors, Membranes, Artificial, Waste Disposal, Fluid methods, Wastewater chemistry
- Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
21. Application of a generalized hybrid machine learning model for the prediction of H 2 S and VOCs removal in a compact trickle bed bioreactor (CTBB).
- Author
-
Barbusiński K, Szeląg B, Parzentna-Gabor A, Kasperczyk D, and Rene ER
- Subjects
- Odorants analysis, Air Pollutants analysis, Waste Disposal, Fluid methods, Machine Learning, Hydrogen Sulfide analysis, Hydrogen Sulfide chemistry, Volatile Organic Compounds analysis, Bioreactors
- Abstract
This study presents a generalized hybrid model for predicting H
2 S and VOCs removal efficiency using a machine learning model: K-NN (K - nearest neighbors) and RF (random forest). The approach adopted in this study enabled the (i) identification of odor removal efficiency (K) using a classification model, and (ii) prediction of K <100%, based on inlet concentration, time of day, pH and retention time. Global sensitivity analysis (GSA) was used to test the relationships between the inputs and outputs of the K-NN model. The results from classification model simulation showed high goodness of fit for the classification models to predict the removal of H2 S and VOCs (SPEC = 0.94-0.99, SENS = 0.96-0.99). It was shown that the hybrid K-NN model applied for the "Klimzowiec" WWTP, including the pilot plant, can also be applied to the "Urbanowice" WWTP. The hybrid machine learning model enables the development of a universal system for monitoring the removal of H2 S and VOCs from WWTP facilities., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
22. Aerobic granulation and resource production under continuous and intermittent saline stress.
- Author
-
Pereira Almeida FD, Bandeira de Carvalho C, Mendes Barros AR, Amancio Frutuoso FK, and Bezerra Dos Santos A
- Subjects
- Phosphorus, Aerobiosis, Biomass, Nitrogen, Biopolymers, Carbon metabolism, Salt Stress, Sodium Chloride, Bioreactors, Sewage chemistry, Waste Disposal, Fluid methods
- Abstract
Three sequential batch reactors (SBR) were operated to evaluate salt addition's impact on granulation, performance, and biopolymer production in aerobic granular sludge (AGS) systems. System R1 was fed without adding salt (control); system R2 operated with saline pulses, i.e., one cycle with salt (2.5 g NaCl/L) addition followed by another without salt; and R3 received continuous supplementation of 2.5 g NaCl/L. The results indicated that the reactors supplemented with salt presented higher concentrations of mixed liquor volatile suspended solids (MLVSS) and better settleability than R1, showing that osmotic pressure contributed to biomass growth, accelerated granulation, and improved physical characteristics. The faster granulation occurred in R2, thus proving the beneficial effects of intermittent salt addition through alternating pulses. Salt addition did not impair the simultaneous removal of carbon, nitrogen, and phosphorus. In fact, R2 showed better carbon removals. In conclusion, continuous or intermittent (pulsed) supplementation of 2.5 g NaCl/L did not lead to increased production of extracellular polymeric substances (EPS) and alginate-like exopolymers (ALE). This outcome could be attributed to the low saline concentration employed, a higher food-to-microorganism (F/M) ratio observed in R1, and possibly greater endogenous consumption of biopolymers in the famine period in R2 and R3 due to the greater solids retention time (SRT). Therefore, this study brings important results that contribute to a better understanding of the effect of salt in continuous dosing or in pulses as a selection pressure strategy to accelerate granulation, as well as the behavior of the AGS systems for saline effluents., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
23. The flow pattern effects of hydrodynamic cavitation on waste activated sludge digestibility.
- Author
-
Abdelrahman AM, Tebyani S, Talabazar FR, Tabar SA, Berenji NR, Aghdam AS, Koyuncu I, Kosar A, Guven H, Ersahin ME, Ghorbani M, and Ozgun H
- Subjects
- Biofuels analysis, Bioreactors, Sewage chemistry, Waste Disposal, Fluid methods, Hydrodynamics, Methane metabolism
- Abstract
The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH
4 /g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4 /g VS) and control sample (98.3 mL CH4 /g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
24. Optimizing bioelectromethanosynthesis of CO 2 and membrane fouling mitigation in MECs via in-situ biogas recirculation.
- Author
-
Hu W, Zheng S, Wang J, Lu X, Han Y, Wang J, and Zhen G
- Subjects
- Electrolysis, Electrodes, Bioelectric Energy Sources, Methanobacterium metabolism, Membranes, Artificial, Proteobacteria metabolism, Carbon Dioxide analysis, Bioreactors, Methane, Biofuels
- Abstract
The CO
2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)- Published
- 2024
- Full Text
- View/download PDF
25. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation.
- Author
-
Song W, Kim C, Lee J, Han J, Jiang Z, Kim J, An S, Park Y, and Kweon J
- Subjects
- Waste Disposal, Fluid methods, Extracellular Polymeric Substance Matrix, Sewage chemistry, Biofouling prevention & control, Bioreactors, Fatty Acids, Monounsaturated, Biofilms drug effects, Membranes, Artificial, Wastewater chemistry
- Abstract
Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Jihyang Kweon reports financial support was provided by Konkuk University. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
26. Towards a circular bioeconomy to produce methane by co-digestion of coffee and brewery waste using a mixture of anaerobic granular sludge and cattle manure as inoculum.
- Author
-
Rodrigues CV, Camargo FP, Lourenço VA, Sakamoto IK, Maintinguer SI, Silva EL, and Amâncio Varesche MB
- Subjects
- Animals, Cattle, Anaerobiosis, Industrial Waste, Biofuels, Manure, Methane metabolism, Bioreactors, Sewage, Wastewater chemistry, Coffee metabolism, Waste Disposal, Fluid methods
- Abstract
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L
-1 ), coffee (10 g COD L-1 ) and brewery (1.5 g COD L-1 ) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1 ) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
27. Effects of carbon-based conductive materials on semi-continuous anaerobic co-digestion of organic fraction of municipal solid waste and waste activated sludge.
- Author
-
Fazzino F, Frontera P, Malara A, Pedullà A, and Calabrò PS
- Subjects
- Anaerobiosis, Graphite chemistry, Bioreactors, Nanotubes, Carbon chemistry, Charcoal chemistry, Sewage chemistry, Methane analysis, Solid Waste analysis, Carbon chemistry, Carbon analysis, Refuse Disposal methods
- Abstract
Organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) are the most produced organic waste streams in urban centres. Their anaerobic co-digestion (AcoD) allows to generate methane (CH
4 ) and digestate employable as renewable energy source and soil amendment, respectively, fully in accordance with circular bioeconomy principles. However, the widespread adoption of such technology is limited by relatively low CH4 yields that fail to bridge the gap between benefits and costs. Among strategies to boost AcoD of OFMSW and WAS, use of conductive materials (CMs) to promote interspecies electron transfer has gained increasing attention. This paper presents one of the few experimental attempts of investigating the effects of four different carbon(C)-based CMs (i.e., granular activated carbon - GAC, graphite - GR, graphene oxide - GO, and carbon nanotubes - CNTs) separately added in semi-continuous AcoD of OFMSW and thickened WAS. The presence of C-based CMs has been observed to improve CH4 yield of the control process. Specifically, after 63 days of operation (concentrations of GAC and GR of 10.0 g/L and of GO and CNTs of 0.2 g/L), 0.186 NL/gVS , 0.191 NL/gVS , 0.203 NL/gVS , and 0.195 NL/gVS of CH4 were produced in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.177 NL/gVS produced in the control process. Likewise, at the end of the test (i.e., after 105 days at concentrations of C-based CMs half of the initial ones), CH4 yields were 0.193 NL/gVS , 0.201 NL/gVS , 0.211 NL/gVS , and 0.206 NL/gVS in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.186 NL/gVS of the control process. Especially with regard to GR, GO, and CNTs, results obtained in the present study represent a significant advance of the knowledge on the effects of such C-based CMs to realistic and scalable AD process conditions respect to previous literature., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
28. Bioelectrochemical reactor to manage anthropogenic sulfate pollution for freshwater ecosystems: Mathematical modeling and experimental validation.
- Author
-
Berens MJ, Deen TW, and Chun CL
- Subjects
- Bioreactors, Ecosystem, Oxidation-Reduction, Electrochemical Techniques methods, Sulfates metabolism, Models, Theoretical, Fresh Water chemistry, Water Pollutants, Chemical analysis, Water Pollutants, Chemical metabolism, Biodegradation, Environmental
- Abstract
Anthropogenic sulfate loading into otherwise low-sulfate freshwater systems can cause significant ecological consequences as a biogeochemical stressor. To address this challenge, in situ bioremediation technologies have been developed to leverage naturally occurring microorganisms that transform sulfate into sulfide rather than implementing resource-intensive physio-chemical processes. However, bioremediation technologies often require the supply of electron donors to facilitate biological sulfate reduction. Bioelectrochemical systems (BES) can be an alternative approach for supplying molecular hydrogen as an electron donor for sulfate-reducing bacteria through water electrolysis. Although the fundamental mechanisms behind BESs have been studied, limited research has evaluated the design and operational parameters of treatment systems when developing BESs on a scale relevant to environmental systems. This study aimed to develop an application-based mathematical model to evaluate the performance of BESs across a range of reactor configurations and operational modes. The model was based on sulfate transformation by hydrogenotrophic sulfate-reducing bacteria coupled with the recovery of solid iron sulfide species formed by the oxidative dissolution of dissolved ferrous iron from a stainless steel anode. Sulfate removal closely corresponded to the rate of electrolytic hydrogen production and hydraulic residence time but was less sensitive to specific microbial rate constants. The mathematical model results were compared to experimental data from a pilot-scale BES tested with nonacidic mine drainage as a case study. The close agreement between the mathematical model and the pilot-scale BES experiment highlights the efficacy of using a mathematical model as a tool to develop a conceptual design of a scaled-up treatment system., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
29. Enhanced methane recovery from anaerobic membrane bioreactor coupled with cold plasma pretreatment for rapid hydrolysis and nitrogen removal.
- Author
-
Ortiz Vanegas GO and Kim HW
- Subjects
- Anaerobiosis, Hydrolysis, Biological Oxygen Demand Analysis, Wastewater chemistry, Methane metabolism, Bioreactors, Nitrogen metabolism, Sewage chemistry, Waste Disposal, Fluid methods, Biodegradation, Environmental, Plasma Gases
- Abstract
Research to increase biomethane recovery efficiency from thickened sewage sludge (TSWS) using sustainable anaerobic digestion (AD) in municipal wastewater treatment plants is ongoing. Pretreating substrates is known to increase organic biodegradation and biomethane conversion rates in AD. Cold plasma (CP), a recently adopted advanced oxidation processes (AOP) has emerged as an alternative to accelerate pretreatment times under different operation variables. This study assessed raw and CP-pretreated TSWS in an anaerobic sequencing batch reactor (ASBR) and anaerobic membrane bioreactor (AnMBR). The effects of incremental organic loading rates (OLR) and nitrogenous compounds concentration on enhanced CH
4 bioconversion efficiency were evaluated. We found that the AnMBR outperformed the ASBR, with an overall chemical oxygen demand (COD) conversion rate of 67%, lower total nitrogen (T-N) accumulation (594 mg L-1 ), and an overall methane yield of 0.24 L CH4 g-1 COD. CP pretreatment improved TSWS AD, resulting in more efficient COD removal and methane recovery. This study suggests that CP technology is a promising pretreatment to improve AD when treating TSWS., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
30. High-performance diesel biodegradation using biogas digestate as microbial inoculum in lab-scale solid supported bioreactors.
- Author
-
Olivera, Camila, Laura Tondo, María, Girardi, Valentina, Sol Herrero, María, Lucía Balaban, Cecilia, and Matías Salvatierra, Lucas
- Subjects
- *
BIOREACTORS , *BIODEGRADATION , *DIESEL fuels , *ANAEROBIC digestion , *MICROBIAL diversity , *BIOGAS , *BIOGAS production - Abstract
Industrial anaerobic digestion (AD) produces biogas and a digestate that is usually applied as a biofertilizer. However, the study and application of this by-product in terms of its rich microbial diversity and high metabolic activity have been barely investigated. In this work, the digestate regarded as an inoculum—without any further manipulation—was faced to a target hydrocarbon (i.e., diesel oil) to explore its biodegradation capability and potential application in bioaugmentation strategies. Lab-scale single batch bioreactors with solid support (i.e., sand or gravel) embedded with the inoculum and diesel were used to improve bioaccessibility and biofilm formation. In addition, different experimental conditions were assayed varying the initial diesel concentration, microbial load, type of solid support, inoculum aging time, and presence or absence of oxygen. Remaining diesel concentration, dehydrogenase activity and microbial community structure were periodically determined. Remarkably, this low-cost consortium was capable of a significant reduction (>90%) in the concentration of diesel, within 14 days and when the initial load was as high as 6950 mg/kg dry solid support. Furthermore, a 10-fold increment in dehydrogenase activity, alongside an increase in the abundance of hydrocarbon-degrading bacterial groups, and the enrichment of genes for alkane monooxygenase and aromatic ring-hydroxylating dioxygenases, encourage further study of this consortium for bioremediation purposes. [Display omitted] • Biogas digestate was evaluated for diesel bioremediation strategies. • Bioreactors with an inert solid support improved diesel-inoculum interaction. • Inoculum was able to biodegrade >90% of diesel (∼7000 mg/kg dry weight) in 14 days. • Bacterial phylotypes with hydrocarbon-degrading capabilities were highly enriched. • Results encourage field-scale validation for soil and wastewater bioremediation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
31. Expression of Concern: Membrane reactor for production of biodiesel from nonedible seed oil of Trachyspermum ammi using heterogenous green nanocatalyst of manganese oxide.
- Subjects
- Seeds chemistry, Catalysis, Bioreactors, Manganese Compounds chemistry, Oxides chemistry, Plant Oils, Biofuels
- Published
- 2024
- Full Text
- View/download PDF
32. Evaluation of per- and polyfluoroalkyl substances (PFAS) in landfill liquids from Pennsylvania, Colorado, and Wisconsin.
- Author
-
Chen Y, Zhang H, Liu Y, Bowden JA, Townsend TG, and Solo-Gabriele HM
- Subjects
- Colorado, Wisconsin, Pennsylvania, Biofilms, Bioreactors, Waste Disposal Facilities, Water Pollutants, Chemical analysis, Fluorocarbons analysis
- Abstract
PER: and polyfluoroalkyl substances (PFAS) have been measured in aqueous components within landfills. To date, the majority of these studies have been conducted in Florida. This current study aimed to evaluate PFAS concentrations in aqueous components (leachate, gas condensate, stormwater, and groundwater) from four landfills located outside of Florida, in Pennsylvania, Colorado, and Wisconsin (2 landfills). The Pennsylvania landfill also provided the opportunity to assess a leachate treatment system. Sample analyses were consistent across studies including the measurements of 26 PFAS and physical-chemical parameters. For the four target landfills, average PFAS concentrations were 6,900, 22,000, 280, and 260 ng L
-1 in the leachate, gas condensate, stormwater, and groundwater, respectively. These results were not significantly different than those observed for landfills in Florida except for the significantly higher PFAS concentrations in gas condensate compared to leachate. For on-site treatment at the Pennsylvania landfill, results suggest that the membrane biological bioreactor (MBBR) system performed similarly as aeration-based leachate treatment systems at Florida landfills resulting in no significant decreases in ∑26 PFAS. Overall, results suggest a general consistency across US regions in PFAS concentrations within different landfill liquid types, with the few differences observed likely influenced by landfill design and local climate. Results confirm that leachate exposed to open air (e.g., in trenches or in treatment systems) have lower proportions of perfluoroalkyl acid precursors relative to leachate collected in enclosed pipe systems. Results also confirm that landfills without bottom liner systems may have relatively higher PFAS levels in adjacent groundwater and that landfills in wetter climates tend to have higher PFAS concentrations in leachate., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
33. Separation of nutrients from SCFAs with a dynamic membrane in a sludge anaerobic fermenter.
- Author
-
Yang L, Chen K, Chen L, Zhai S, Li Z, and Zhu H
- Subjects
- Anaerobiosis, Fermentation, Nutrients, Fatty Acids, Volatile, Hydrogen-Ion Concentration, Sewage, Bioreactors
- Abstract
The complexity and high cost to separate and recover short chain fatty acids (SCFAs), ammonium ions, and phosphates in the sludge fermentation liquid hinder the application of sludge anaerobic fermentation. In this study, an interesting phenomenon was found in a sludge anaerobic fermenter with a dynamic membrane (DM) which could not only enhance SCFAs production but also retain most SCFAs in fermenter. The separation factor of DM for NH
3 -N/SCFAs and PO4 3- /SCFAs throughout the DM development were about 40 and 80, respectively. Analysis reveals that rejection of SCFAs by DM could not be simply correlated to molecular weight or membrane pore size. The rejection mechanisms might be dominated by Donnan rejection. In addition, biodegradation in the DM may also have contribution. Findings of this study suggest the potential of DM as an economical technology for nutrients and SCFAs recover., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
34. Effect of ciprofloxacin on the one-stage partial nitrification and anammox biofilm system: A multivariate analysis focusing on size-fractionated organic components.
- Author
-
Xiao K, Abbt-Braun G, Pleitner R, and Horn H
- Subjects
- Anaerobic Ammonia Oxidation, Anti-Bacterial Agents pharmacology, Biofilms, Bioreactors, Nitrogen, Sewage, Oxidation-Reduction, Denitrification, Ciprofloxacin pharmacology, Nitrification
- Abstract
The impact of ciprofloxacin (CIP) in the partial nitrification and anammox biofilm system was investigated by multivariate analysis, focusing on size-fractionated organic components. The CIP dose of 10 μg/L did not inhibit the total nitrogen (TN) removal efficiency, even though the abundance of antibiotic resistant genes (ARGs) (i.e., qnrD, qnrB, qnrA, qnrS, and arcA) was elevated. However, a gradual higher CIP dosing up to 100 μg/L inhibited the TN removal efficiency, while the abundance of ARGs was still increased. Moreover, both the TN removal efficiency and the abundant ARGs were dwindled at 470 μg/L of CIP. As the CIP dose increased from 0 to 100 μg/L, the abundance of high molecular weight (MW) fractions (14,000 to 87,000 Da; 1000 to 14,000 Da) and humic/fulvic acid-like components in the soluble extracellular polymeric substances (HSS) decreased, with more increases of low MW (84-1000 Da; less than 84 Da) fractions and soluble microbial by-products in soluble extracellular polymeric substances (SMPS). Continuously increasing the CIP dose till 470 μg/L, an inverse trend of the changes of these organic components was noted, along with clear reductions of the microbial diversity and richness, and the abundance of key functional genes responsible for nitrogen removal. The predominance of functional gene amoA (related with ammonia oxidizing bacteria) was more significantly with more distribution of SMPS with relatively low MW and less distribution of HSS with relatively high MW, as well as polymer decomposing microorganisms such as Bryobacteraceae and the unclassified Saprospirales., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
35. Concurrent removal of carbon and nutrients in a one-stage dual internal circulation airlift A2O bioreactor from milk processing industrial wastewater: Process optimization, sludge characteristics and operating cost evaluation.
- Author
-
Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht M, and JBatstone D
- Subjects
- Animals, Carbon, Milk, Nutrients, Bioreactors, Waste Disposal, Fluid methods, Wastewater, Sewage
- Abstract
In this work, a one-stage dual internal circulation airlift anaerobic/anoxic/aerobic (DCAL-A2O) bioreactor was continuously operated for concurrent removal of nutrients and organics from milk processing wastewater (MPW). Special configuration of the airlift A2O bioreactor created possibility of the formation of desired anaerobic, anoxic and aerobic zones in a single unit. The process functionality of the bioreactor was examined under three influential operating variables i.e. hydraulic retention time (HRT; 7-15 h), air flow rate (AFR; 1-3 L/min) and aerobic volume ratio (AVR; 0.324-0.464). The optimum region was identified at HRT of 13h, AFR of 2L/min and AVR of 0.437, leading to TCOD, TN and TP removal efficiency of 94.5 %, 59.6 %, and 62.2 %, respectively, and effluent turbidity of 8 NTU. The impact of feed biodegradability on the process performance of the bioreactor treating the MPW, soft drink wastewater (SDW) and soybean oil plant wastewater (SOW) was also assessed. From the results, the feed characteristics affected significantly the nutrients removal. Moreover, the feeding location played an effective role in the nutrient removal while treating the MPW at optimum operating conditions. In this study, the change in residual organic matters as soluble microbial products (SMP) was monitored at various operating conditions. In addition, the impact of SMP extracted from sludge, extracellular polymeric substances (EPS) comprising of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) was analyzed on sludge characteristics as bio-flocculation and settleability properties. According to the obtained data, the increase in operating variables led to the reduction in contents of effluent SMP, sludge SMP, LB-EPS, turbidity, and SVI, thereby, the enhancement in the sludge characteristics. Meanwhile, analysis of microbial communities verified the presence of various functional bacterial species. The cost operating evaluation confirmed the cost effectiveness of the airlift A2O bioreactor in reduction of energy consumption for the MPW treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
36. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids.
- Author
-
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, and Li G
- Subjects
- Fermentation, Biomass, Fatty Acids, Bioreactors
- Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
37. Assessment of hybrid fixed and moving bed biofilm applications for wastewater treatment capacity increase - In situ tests in El-Gouna WWTP, Egypt.
- Author
-
Riechelmann C, Habashy MM, Rene ER, Moussa MS, and Hosney H
- Subjects
- Egypt, Bioreactors, Biomass, Oxygen, Waste Disposal, Fluid methods, Sewage chemistry, Biofilms
- Abstract
This paper provides a procedure for comparing the performance of different biofilm carrier medias and their surrounding suspended biomass through oxygen uptake rate (OUR) tests. For in situ (oxygen uptake rate (OUR) measurements, three identical lab scale biofilm reactors were set up at the El Gouna wastewater treatment plant (WWTP). In this setup, two options of media for moving-bed biofilm reactors (MBBR) and one media for fixed-bed biofilm reactors (FBBR) were compared. The WWTP also used the same carrier in a real scale hybrid application to analyze how the interactions between the carrier type and the suspended biomass influences the overall performance. The in situ OUR approach is recommended to measure the contribution of the biofilm fixed biomass under site specific conditions. Specifically, settleability and diffusion limitations are the two opposite poles that cannot be predicted adequately for mild climate conditions based on the literature. A biofilm carrier application can add but actually can also reduce the capacity in a hybrid activated sludge system: The added MBBR-media was able to grind down the sludge flocs forming a poorly settleable suspended biomass. The added FBBR-media can lead to extracellular polymeric substances (EPS) rich biofilms that contribute very little as substrate and oxygen are unavailable for the microorganisms present in the biofilm. In this application of the comparison procedure, Kaldnes K1 like MBBR media was compared with a recycling MBBR carrier option (poly propylene bottle caps) and Jäger Envirotech "BioCurlz™" FBBR media. The study showed higher average rates for the MBBR but decreased settleability. The FBBR showed higher peak rates when flushed to break up the biofilm and well settleable sludge. The determination of OUR per g of volatile solids (SOUR) showed comparable results for all the carriers and in warm conditions, only the capacity to accommodate biomass determines the contribution of the carrier., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
38. Bioaugmentation of anaerobic digesters with the enriched lignin-degrading microbial consortia through a metagenomic approach.
- Author
-
Ozsefil IC, Miraloglu IH, Ozbayram EG, Ince B, and Ince O
- Subjects
- Microbial Consortia, Bioreactors, Anaerobiosis, Methane metabolism, Biofuels, Lignin metabolism, Microbiota
- Abstract
The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS
-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
39. Granulation characteristics of anammox sludge in response to different signal-molecule-stimulants; mediated through programmed cell death.
- Author
-
Yang Z, Wang X, Yu D, Chen G, Ma K, Zhang P, and Xu Y
- Subjects
- Bioreactors, Ammonia, Nitrogen metabolism, Apoptosis, Oxidation-Reduction, Sewage, Anaerobic Ammonia Oxidation
- Abstract
During the anammox process, mitigation of biomass washout to increase sludge retention is an important parameter of process efficiency. Signal molecular stimulants (SMS) initiate the sludge granulations controlled by programmed cell death (PCD) of microorganisms. In this study, the aerobic granular sludge (AGS), cell fragments, extracellular polymeric substances (EPS), and AGS process effluent were tested as SMS to identify their effect on anammox granulation. The results showed that the addition of SMS increased the nitrogen removal efficiency to varying degrees, whereas the addition of AGS process supernatant, as SMS, increased the ammonia removal efficiency up to 96%. The addition of SMS was also found to increase EPS production and contributed to sludge granulation. In this process, the proportion of PCD increased and both Gaiella and Denitratisoma abundance increased from 3.54% to 5.59%, and from 1.8% to 3.42%, respectively. In conclusion, PCD was found important to increase anaerobic ammonia oxidation performance through the granulation mechanism., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
40. How high salt shock affects performance and membrane fouling characteristics of a halophilic membrane bioreactor used for treating hypersaline wastewater.
- Author
-
Shokri S, Bonakdarpour B, and Abdollahzadeh Sharghi E
- Subjects
- Membranes, Artificial, Sodium Chloride, Bioreactors, Wastewater, Sewage
- Abstract
In the present study, the effect of short-term salt shocks (13% and 20%) on the performance of a halophilic MBR bioreactor used to treat a hypersaline (5% salt) synthetic wastewater was considered. 13% and 20% salt shocks resulted in a transient and permanent decrease in chemical oxygen demand removal efficiency, respectively which could be correlated with soluble microbial products (SMP) concentration and specific oxygen uptake rate values of the halophilic population. DNA leakage tests suggested that both 13% and 20% short-term salt shocks resulted in some cell structural damage. During both 13% and 20% salt shocks mixed liquor SMP, extracellular polymeric substances (EPS), zeta potential and endogenous respiration increased while relative hydrophobicity, EPS
p /EPSc and exogenous respiration decreased; in both cases, however, the pre-shock values for these parameters were restored after the removal of the salt shock. 13% salt shock resulted in a transient increase in the membrane fouling rate and a permanent rise in total membrane resistance (Rt ). On the other hand, both membrane fouling rate and Rt increased during 20% salt shock. Membrane fouling rate initially reduced after the 20% salt shock removal but after 5 days a "TMP jump" occurred. The latter was caused by the higher steady state SMPc and SMPp concentrations after removal of 20% salt shock compared to pre-shock values. This might have either resulted in a decrease in critical flux or an increase in local flux above critical flux in some parts of the membrane. The contribution of cake layer resistance to overall membrane resistance increased after the 13% and 20% salt shocks. The findings of the present study reveal the robustness of halophilic MBRs against salt shocks in the treatment of hypersaline wastewater. However, in cases of very high salt shocks, appropriate membrane fouling reduction strategies should be carried out during its operation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
41. Enhancement of methane production from anaerobic digestion of Erigeron canadensis via O 2 -nanobubble water supplementation.
- Author
-
Pei L, Song Y, Chen G, Mu L, Yan B, and Zhou T
- Subjects
- Anaerobiosis, Water, Bacteria, Archaea, Dietary Supplements, Methane, Bioreactors, Sewage chemistry, Erigeron
- Abstract
Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O
2 -NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2 -NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2 -NBW addition on day 0. Furthermore, addition of O2 -NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420 . Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2 -NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2 -NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2 -NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
42. Effective chloramine management without "burn" in biofilm affected nitrifying tanks using a low dose of copper.
- Author
-
Chandra Sarker D, Bal Krishna KC, Ginige MP, and Sathasivan A
- Subjects
- Chlorine, Nitrites, Ammonia, Biofilms, Nitrification, Bioreactors, Chloramines, Copper
- Abstract
This paper highlights the potential to effectively inhibit nitrification and restore chloramine levels using a low copper concentration in a biofilm-affected (surface-to-volume ratio 16 m
-1 ) continuous-flow laboratory-scale chloraminated system. High nitrite and low chloramine containing tanks are always recovered with chlorine "burn" by water utilities. The "burn" is not only costly and operationally complex, but also compromises the water quality, public health, and customer relations. A laboratory system comprising five reactors connected in series was operated. Each reactor simulated conditions typically encountered in full-scale systems. Low amount of copper (0.1-0.2 mg-Cu L-1 ) was dosed once per day into nitrified reactors. At any given time, only one reactor was dosed with copper. Not only inhibition of nitrification, chloramine decay associated with bulk water, biofilm and sediments also improved. However, the improvement was quicker and more significant when the influent to the reactor contained a high chloramine and a low nitrite concentration. Ammonia oxidising microbes exhibited resilience when exposed to low copper and chloramine concentrations for an extended period. Chloramine decay due to planktonic microbes and chemical reactions in bulk water decreased more rapidly than decay attributed to biofilm and sediments. The concept "biostable residual chlorine" explained how copper and chloramine can inhibit nitrification. Once nitrification was inhibited, the chloramine supplied from upstream effectively continued to suppress downstream nitrification, and this effect lasted more than 50 days even at 22 °C. The findings could be used to develop short-term copper dosing strategies and prevent negative impacts of nitrification and breakpoint chlorination., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Arumugam Sathasivan reports financial support was provided by Australian Research Council. Arumugam Sathasivan reports financial support was provided by Water Corporation., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
43. Enhanced aerobic granular sludge with micro-electric field for sulfamethoxazole degradation: Efficiency, mechanism, and microbial community.
- Author
-
Zhao X, Pei W, Qi Y, Li Y, and Kong X
- Subjects
- Waste Disposal, Fluid methods, Aerobiosis, Bioreactors, Nitrogen, Sewage chemistry, Microbiota
- Abstract
In this study, an aerobic granular sludge electrochemical system (AGES) was established by applying the micro-electric field to an aerobic granular sludge (AGS) reactor for the degradation of sulfamethoxazole (SMZ). Under the stimulation of the micro-electric field, the granulation of sludge was improved and the degradation rate of SMZ was enhanced. The features of granular sludge were characterized by scanning electron microscopy and X-ray diffraction. The optimal degradation rate of SMZ (88%) was obtained at the voltage of 3 V and the effective electrode area of 800 mm
2 . The results of kinetics analyses revealed that the degradation of SMZ by AGES can be fitted with the second-order kinetic equation, showing a degradation rate constant (k) of 0.001 L mol-1 ·min-1 . The degradation products of SMZ in the AGES system were detected by LC-MS and their possible degradation routes were elucidated. The micro-electric field in the AGES system played a selective role in microbes' enrichment and growth, changing the diversity of the microbial community. Pseudomonas, Tolumonas, and Acidovorax were the dominant bacteria in the AGES system, which is accountable for the abatement of SMZ and nutrients. This work provides a green means for improving AGS and paves the way for applying the AGS process to real-world wastewater treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
44. Biochar-enhanced anaerobic mixed culture for biodegradation of 1,2-dichloroethane: Microbial community, mechanisms, and techno-economics.
- Author
-
Hasanan K, Badr OA, El-Meihy R, Nasr M, and Tawfik A
- Subjects
- Humans, Anaerobiosis, Biofuels, Charcoal, Methane, Bioreactors, Microbiota, Ethylene Dichlorides
- Abstract
While anaerobic digestion (AD) has been employed for the degradation of chlorinated aliphatic hydrocarbons, the associated digester performance might suffer from volatile fatty acids accumulation, insufficient substrate-microbes interaction, and lower biogas yields. To overcome these limitations, this study is the first to augment the hydrocarbon-degrading microbial capacities by adding agricultural waste-based biochar to the digestion medium. 1,2-dichloroethane (1,2-DCA) was selected as the target pollutant because it is discharged in large quantities from oil refining, petrochemical, and chemical industries, causing serious environmental and human health concerns. A multi-chamber anaerobic reactor (MAR) was operated at a 1,2-DCA loading rate of 1.13 g/L/d, glucose dosage (as an electron donor) range of 200-700 mg/L, and hydraulic retention time of 11.2 h, giving dechlorination = 32.2 ± 6.9% and biogas yield = 210 ± 30 mL/g COD
removed . These values increased after biochar supplementation (100 mg/g volatile solids, VS, as an inoculum carrier) up to 60.2 ± 11.5% and 290 ± 40 mL/g CODremoved , respectively, owing to the enhancement of dehydrogenase enzyme activities. Burkholderiales (15.3%), Clostridiales (2.3%), Bacteroidales (3.5%), Xanthomonadales (3.3%), and Rhodobacterales (6.1%) involved in 1,2-DCA degradation were dominant in the reactor supplemented with biochar. It's suggested that biochar played a major role in facilitating the direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens, where chloride, ethylene glycol, and acetate derived from 1,2-DCA dechlorination could be further used to promote methanogenesis and methane production. The synergetic effect of adsorption and dechlorination towards 1,2-DCA removal was validated at various biochar dosages (50-120 mg/g) and 1,2-DCA concentrations (50-1000 mg/L). The techno-economic results showed that the cost of treating 1,2-DCA-laden discharge (100 m3 /d) by the MAR module could be 0.83 USD/m3 with a payback period of 6.24 years (NPV = 2840 USD and IRR = 10%), retrieving profits from pollution reduction (9542 USD/yr), biogas selling (10418 USD/yr), and carbon credit (10294 USD/yr)., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
45. Predictive modelling of methane yield in biochar-amended cheese whey and septage co-digestion: Exploring synergistic effects using Gompertz and neural networks.
- Author
-
K B, Pilli S, Rao PV, and Tyagi RD
- Subjects
- Anaerobiosis, Methane, Bioreactors, Neural Networks, Computer, Digestion, Biofuels, Whey, Cheese, Charcoal
- Abstract
This study performed bench scale studies on anaerobic co-digestion of cheese whey and septage mixed with biochar (BC) as additive at various dosages (0.5 g, 1 g, 2 g and 4 g) and total solids (TS) concentrations (5%, 7.5%, 10%,12.5% and 15%). The experimental results revealed 29.58% increase in methane yield (486 ± 11.32 mL/gVS) with 27% reduction in lag phase time at 10% TS concentration and 50 g/L of BC loading. The mechanistic investigations revealed that BC improved process stability by virtue of its robust buffering capacity and mitigated ammonia inhibition. Statistical analysis indicates BC dosage had a more pronounced effect (P < 0.0001) compared to the impact of TS concentrations. Additionally, the results were modelled using Gompertz model (GM) and artificial neural network (ANN) algorithm, which revealed the outperformance of ANN over GM with MSE 17.96, R
2 value 0.9942 and error 0.27%. These findings validated the practicality of utilizing a high dosage of BC in semi-solid anaerobic digestion conditions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
46. Tertiary treatment of municipal wastewater in an IBFR dominated by PD/A with unique niche.
- Author
-
Wang YN, Dong SR, OuYang HL, Yang T, and Wang Y
- Subjects
- Extracellular Polymeric Substance Matrix, Bioreactors, Oxidation-Reduction, Sewage, Nitrogen, Carbon, Wastewater, Denitrification
- Abstract
To explore the feasibility of biofilter reactor to treat municipal secondary effluent deeply without extra carbon source, this paper proposed an integrated biofilter reactor (IBFR) coupling partial denitrification (PD) with anammox (A) to treat the secondary effluent and raw sewage with the flow ratio of 3:1 together. The results show that the effluent concentration of TN and COD in IBFR could be reduced to 10 mg/L and 15 mg/L, respectively, under hydraulic retention time of 1.5 h and nitrogen loading rate of 0.55 kg/(m
3 ·d). The highest specific anammox activity (19.2 mg N/(g TVS·d)) and the maximum extracellular polymeric substance (EPS) content (107.21 mg/g TVS) occurred at the 25-50 cm section of IBFR, where Thauera, Candidatus Anammoximicrobium and Candidatus Brocadia were the dominant denitrifiers and anammox bacteria. Furthermore, the cyclic self-stratification occurred along the reactor height, where the utilization, decomposition, transformation and cross-feeding of EPS enhanced the performance stability of nitrogen and carbon removal, strengthened the niche structure and promoted the synergistic symbiosis. In conclusion, IBFR coupling PD and A demonstrated the possibility to treat secondary effluent without additional carbon sources, which is expected as an alternative approach for tertiary treatment of municipal wastewater., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
47. Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation.
- Author
-
Xu Y, Liu Y, Liang C, Guo W, Ngo HH, and Peng L
- Subjects
- Ammonia toxicity, Ammonia metabolism, Rivers, Oxidation-Reduction, Nitrous Acid, Biotransformation, Antiviral Agents toxicity, Bioreactors, Nitrites, Sewage, Ammonium Compounds, Amides, Pyrazines
- Abstract
Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L
-1 , respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
48. Harnessing the potential of ginkgo biloba extract: Boosting denitrification performance through accelerated electron transfer.
- Author
-
Gao H, Chen N, An N, Zhan Y, Wang H, and Feng C
- Subjects
- Humans, Electrons, Plant Extracts, Nitrogen, Bioreactors, Denitrification, Extracellular Polymeric Substance Matrix, Ginkgo Extract
- Abstract
Ginkgo biloba extract (GBE) had several effects on the human body as one of the widely used phytopharmaceuticals, but it had no application in microbial enhancement in the environmental field. The study focused on the impact of GBE on denitrification specifically under neutral conditions. At the identified optimal addition ratio of 2% (v/v), the system exhibited a noteworthy increase in nitrate reduction rate (NRR) by 56.34%, elevating from 0.71 to 1.11 mg-N/(L·h). Moreover, the extraction of microbial extracellular polymeric substance (EPS) at this ratio revealed changes in the composition of EPS, the electron exchange capacity (EEC) was enhanced from 87.16 to 140.4 μmol/(g C), and the transfer impedance was reduced within the EPS. The flavin, fulvic acid (FA), and humic acid (HA) provided a π-electron conjugated structure for the denitrification system, enhancing extracellular electron transfer (EET) by stimulating carbon source metabolism. GBE also improved electron transfer system activity (ETSA) from 0.025 to 0.071 μL O
2 /(g·min·prot) and the content of NADH enhanced by 22.90% while significantly reducing the activation energy (Ea ) by 85.6% in the denitrification process. The synergy of improving both intracellular and extracellular electron transfer, along with the reduction of Ea , notably amplified the initiation and reduction rates of the denitrification process. Additionally, GBE demonstrated suitability for denitrification across various pH levels, enhancing microbial resilience in alkaline conditions and promoting survival and proliferation. Overall, these findings open the door to potential applications of GBE as a natural additive in the environmental field to improve the efficiency of denitrification processes, which are essential for nitrogen removal in various environmental contexts., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
49. Effect of biochar on the SPNA system at ambient temperatures.
- Author
-
Wang S, Zhang M, Chen X, Bi Y, Meng F, Wang C, Liu L, and Wang S
- Subjects
- Temperature, Anaerobic Ammonia Oxidation, Oxidation-Reduction, Nitrogen metabolism, Bioreactors, Denitrification, Sewage, Ammonium Compounds metabolism, Charcoal
- Abstract
Biochar has been extensively studied in wastewater treatment systems. However, the role of biochar in the single-stage partial nitritation anammox (SPNA) system remains not fully understood. This study explored the impact of biochar on the SPNA at ambient temperatures (20 °C and 15 °C). The nitrogen removal rate of the system raised from 0.43 to 0.50 g N/(L·d) as the biochar addition was raised from 2 to 4 g/L. Metagenomic analysis revealed that gene abundances of amino sugar metabolism and nucleotide sugar metabolism, amino acid metabolism, and quorum sensing were decreased after the addition of biochar. However, the gene abundance of enzymes synthesizing NADH and trehalose increased, indicating that biochar could stimulate electron transfer reactions in microbial metabolism and assist microorganisms in maintaining a steady state at lower temperatures. The findings of this study provide valuable insights into the mechanism behind the improved nitrogen removal facilitated by biochar in the single-stage partial nitritation anammox system., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
50. Enhancement of denitrification by sulfur-based carrier in sequencing batch reactor (SBR) for advanced wastewater treatment.
- Author
-
Park CG, Lee JS, An SA, Cho SM, Min I, Woo YC, and Kim HS
- Subjects
- Bioreactors, Sulfur, Nitrogen, Carbon, Denitrification, Water Purification methods
- Abstract
This study was to enhance the nitrogen removal efficiency in the sequencing batch reactor (SBR) process by adding sulfur-based carriers. The nitrogen removal efficiency of the control group was compared with that of the experimental group through a two-series operation of SBR1 without carrier and SBR2 with the carrier under the condition of no external carbon source. A total nitrogen (T-N) removal efficiency of 6.6%, 72.6%, and 79.9% was observed in SBR1, SBR2 (5%), and (10%), respectively. The T-N removal efficiency was improved in the system with carriers, which showed an increase in the removal efficiency of approximately 91.7%. The results suggest that the inclusion of the carrier led to an elevation in the sulfur ratio, implying an augmented surface area for sulfur-based denitrifying microorganisms. Additionally, CaCO3 contributed essential alkalinity for sulfur denitrification, thereby preventing a decline in pH. Regardless of the carrier, the efficiency of organic matter removal surpassed 89%, indicating that the sulfur-based carrier did not adversely affect the biological reaction associated with organic matter. Therefore, autotrophic denitrification was successfully performed using a sulfur carrier in the SBR process without an external carbon source, improving the nitrogen removal efficiency., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.