1. Mechanistic Studies of the Acidolysis Reactions Occurring in Silicon-Containing Bilayer Photoresists
- Author
-
Zharov, I., Michl, J., Sherwood, M. H., Sooriyakamaran, R., Larson, C. E., DiPietro, R. A., Breyta, G., and Wallraff, G. M.
- Abstract
As the feature sizes of semiconductor devices continue to shrink, there is an increasing interest in thin film imaging approaches such as silicon-based bilayer resists. We have developed such a resist based on a copolymer of 4-hydroxystyrene with a silicon-containing monomer, which functions simultaneously as the acid-sensitive component and a source of O
2 etch resistance. In an attempt to understand the reactions that occur in the photoresist film, the acidolysis reactions of the 2-[tris(trimethylsilyl)silyl]ethyl moiety have been studied in solution. Acid-catalyzed cleavage of the model 2-trimethylsilylethyl acetate in solution proceeds via a nucleophilic attack on the silicon atom of the protonated acetate. Protonation of 2-[tris(trimethylsilyl)silyl]ethyl acetate is postulated to lead to a bridged siliconium cation, which reacts with nucleophiles along three pathways and yields products in which a nucleophile is attached to a silicon atom. This mechanism is consistent with the silylation of phenolic hydroxyl groups in the photoresist film consisting of a copolymer of 4-hydroxystyrene with 2-[tris(trimethylsilyl)silyl]ethyl methacrylate, observed during photolithographic processing.- Published
- 2002
- Full Text
- View/download PDF