Four-membered rings with a P2BCh core (Ch = S, Se) have been synthesized via reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P–P, not P–B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n = 2, 3), was probed by the addition of Nheterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species. peerReviewed