1. Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal–Ligand Binding of CO2
- Author
-
Sieh, Daniel, Lacy, David C, Peters, Jonas C, and Kubiak, Clifford P
- Subjects
Inorganic Chemistry ,Chemical Sciences ,CO2 reduction ,electrochemistry ,molybdenum ,redox-active ligands ,spectroelectrochemistry ,General Chemistry ,Chemical sciences - Abstract
[((Ar) PMI)Mo(CO)4 ] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6-di-iso-propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4 ] complex, which is ligand based according to IR-SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand-bound carboxylate, [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) , by NMR spectroscopic methods. The CO2 adduct [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) could not be isolated and fully characterized. However, the C-C coupling between the CO2 molecule and the PDI ligand was confirmed by X-ray crystallographic characterization of one of the decomposition products of [( iPr 2PhPMI)Mo(CO)3 (CO2 )](2-) .
- Published
- 2015