1. Cross resistance of quinolone derivatives in gram-negative bacteria.
- Author
-
Barba D, Pennucci C, Esposito S, and Galante D
- Subjects
- Ciprofloxacin, Drug Resistance, Microbial, Gram-Negative Bacteria genetics, Humans, Mutation, Gram-Negative Bacteria drug effects, Nalidixic Acid pharmacology, Nicotinic Acids pharmacology, Oxolinic Acid pharmacology, Pipemidic Acid pharmacology, Quinolines pharmacology
- Abstract
A total of 127 Gram-negative bacteria resistant to nalidixic acid were isolated from as many patients affected by urinary tract infections and hospitalized in the first Clinic of Infectious Diseases, University of Naples. Enterobacteria were identified by Enterotube system (Roche) and API 20 system (Ayerst). Non-fermentative bacteria were identified by OXI/FERM system (Roche). The following bacteria were collected: Escherichia coli 50, Proteus spp. 35, Enterobacter agglomerans 12, Serratia sp. 5, Pseudomonas aeruginosa 25. The in vitro antibacterial activity of nalidixic acid and three other quinoline derivatives (pipemidic acid, oxolinic acid and ciprofloxacin) were studied by determining the MICs by a miniaturized dilution broth method. The MICs were compared to evaluate the eventual cross resistance to the drugs under examination within each bacterial species. The results showed that 23% of bacteria were resistant to nalidixic acid, pipemidic acid and oxolinic acid; 49.6% to nalidixic and pipemidic acid and 0.7% to nalidixic acid and oxolinic acid. On the other hand none of the bacteria were resistant to ciprofloxacin. The last showed very low MICs against all the bacteria under examination, including Pseudomonas and Serratia. The high antibacterial activity of ciprofloxacin even against bacteria highly resistant to the other quinolines could be due to a greater affinity of the target sites or to the better permeability of resistant strains to the newer drug or because it is unaffected until now by mutations of genes responsible for cross resistance.
- Published
- 1985