1. Static and dynamic attractive–repulsive interactions in two coupled nonlinear oscillators
- Author
-
Shiva Dixit and Manish Dev Shrimali
- Subjects
Physics ,Work (thermodynamics) ,Steady state ,Applied Mathematics ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,01 natural sciences ,010305 fluids & plasmas ,Switching time ,Nonlinear oscillators ,Linear stability analysis ,0103 physical sciences ,Limit (music) ,Statistical physics ,Chaotic oscillators ,010306 general physics ,Hybrid model ,Mathematical Physics - Abstract
Many systems exhibit both attractive and repulsive types of interactions, which may be dynamic or static. A detailed understanding of the dynamical properties of a system under the influence of dynamically switching attractive or repulsive interactions is of practical significance. However, it can also be effectively modeled with two coexisting competing interactions. In this work, we investigate the effect of time-varying attractive-repulsive interactions as well as the hybrid model of coexisting attractive-repulsive interactions in two coupled nonlinear oscillators. The dynamics of two coupled nonlinear oscillators, specifically limit cycles as well as chaotic oscillators, are studied in detail for various dynamical transitions for both cases. Here, we show that dynamic or static attractive-repulsive interactions can induce an important transition from the oscillatory to steady state in identical nonlinear oscillators due to competitive effects. The analytical condition for the stable steady state in dynamic interactions at the low switching time period and static coexisting interactions are calculated using linear stability analysis, which is found to be in good agreement with the numerical results. In the case of a high switching time period, oscillations are revived for higher interaction strength.
- Published
- 2020
- Full Text
- View/download PDF