1. Study on mechanism of chip formation of grinding plasma-sprayed alumina ceramic coating.
- Author
-
Su, Chong, Tang, Hujiao, Guo, Pinfang, and Ren, Ruiming
- Subjects
- *
CERAMIC coating , *PLASMA sprayed coatings , *CRACK propagation (Fracture mechanics) , *BRITTLE fractures , *ALUMINUM oxide , *STRESS concentration , *SURFACE cracks , *ABRASIVES - Abstract
The mechanisms of ductile–brittle transition and surface/subsurface crack damage during the grinding of plasma–sprayed alumina ceramic coatings were investigated in an experiment and simulation on single diamond abrasive grain cutting. We observed that the brittle damage modes of alumina ceramic include boundary cracks, median cracks and lateral fractures. The normal force of the abrasive grain results in the initiation of median cracks, whereas the tangential force of the abrasive grain results in the propagation of median cracks in the direction of the abrasive grain cutting. Some cracks propagate downward to form machined surface cracks, whereas others propagate to the unmachined surface of the workpiece to produce brittle removal. Owing to the alternating tensile and compressive stresses, the material in contact with the top of the abrasive grain fractures continuously, forming the main morphology of the machined surface. The geometry and cutting depth of the abrasive grain have a significant influence on the ductile–brittle transition, whereas the cutting speed of the abrasive grain have no significant influence. On one hand, the stress concentration at the pore defects result in crack propagation to the deep layer; on the other hand, it reduces the local strength of the surface material, produces brittle fracturing, and interrupts crack propagation. The pores exposed on the machined surface and the broken morphology around them are important factors for reducing the surface roughness. Experimental observations show that the machined surface morphology of the alumina ceramic coating is composed of brittle fracturing, ductile cutting and plowing, cracks, original pores, and unmelted particles. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF