1. Fibroblast Growth Factor 10 Enhances the Developmental Efficiency of Somatic Cell Nuclear Transfer Embryos by Accelerating the Kinetics of Cleavage During In Vitro Maturation
- Author
-
Eun-Young Kim, Min-Young Shin, Sang-Gi Jeong, Seung-Eun Lee, Yeo-Jin Son, Yun-Gwi Park, and Se-Pill Park
- Subjects
0301 basic medicine ,Nuclear Transfer Techniques ,Swine ,medicine.medical_treatment ,Embryonic Development ,Biology ,Fibroblast growth factor ,Animals, Genetically Modified ,Embryo Culture Techniques ,03 medical and health sciences ,medicine ,Animals ,Blastocyst ,FGF10 ,Growth factor ,Embryo ,Cell Biology ,Embryo Transfer ,Embryo transfer ,In Vitro Oocyte Maturation Techniques ,Cell biology ,In vitro maturation ,Kinetics ,030104 developmental biology ,medicine.anatomical_structure ,embryonic structures ,Oocytes ,Somatic cell nuclear transfer ,Female ,Fibroblast Growth Factor 10 ,Developmental Biology ,Biotechnology - Abstract
Somatic cell nuclear transfer (SCNT) is required for the generation of transgenic animals as disease models. During the in vitro development of SCNT embryos, the quality of matured oocytes is one of the major factors regulating the developmental potential of embryos. Time-lapse monitoring systems are new tools that assess the developmental capacity of embryos for use in embryo transfer. In this study, we investigated the effect of fibroblast growth factor 10 (FGF 10) on the developmental potential of SCNT embryos. After the in vitro maturation (IVM) of oocytes in IVM medium containing 10 ng/mL FGF 10 (10 F), the polar body extrusion rate was significantly higher than in the control. However, there was no difference in the percentage of fused embryos between the groups. The cleavage and blastocyst formation rates of embryos were significantly increased in the 10 F compared with the control. In addition, the total cell number was higher and the apoptotic index was lower in the 10 F than control at day 7. The messenger RNA (mRNA) expression of genes involved in apoptosis (baculoviral inhibitor of apoptosis repeat containing 5 [BIRC5] and caspase 3 [CASP3]) and development (octamer-binding transcription factor 4 [POU5F1] and sex determining region Y box 2 [SOX2]) increased after 10 F treatment. Furthermore, the kinetics of the first cleavage was faster and the percentage of embryos at cell block was significantly lower in the 10 F group than in the control. These results demonstrate that exposure of oocytes to FGF 10 during IVM promotes developmental competence.
- Published
- 2018