1. A novel mitochondrial heteroplasmic C13806A point mutation associated with Iranian Friedreich's ataxia.
- Author
-
Heidari MM, Houshmand M, Hosseinkhani S, Nafissi S, Scheiber-Mojdehkar B, and Khatami M
- Subjects
- Adolescent, Adult, Age of Onset, Child, DNA Mutational Analysis, Energy Metabolism genetics, Female, Friedreich Ataxia ethnology, Friedreich Ataxia metabolism, Genetic Testing, Humans, Iran ethnology, Male, NADH Dehydrogenase genetics, Polymorphism, Genetic genetics, Young Adult, DNA, Mitochondrial genetics, Friedreich Ataxia genetics, Genetic Predisposition to Disease genetics, Point Mutation genetics
- Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by decreased expression of the protein Frataxin. Frataxin deficiency leads to excessive free radical production and dysfunction of chain complexes. Mitochondrial DNA (mtDNA) could be considered a candidate modifier factor for FRDA disease, since mitochondrial oxidative stress is thought to be involved in the pathogenesis of this disease. It prompted us to focus on the mtDNA and monitor the nucleotide changes of genome which are probably the cause of respiratory chain defects and reduced ATP generation. We searched about 46% of the entire mitochondrial genome by temporal temperature gradient gel electrophoresis (TTGE) and DNA fragments showing abnormal banding patterns were sequenced for the identification of exact mutations. In 18 patients, for the first time, we detected 26 mtDNA mutations; of which 5 (19.2%) was novel and 21 (80.8%) have been reported in other diseases. Heteroplasmic C13806A polymorphisms were associated with Iranian FRDA patients (55.5%). Our results showed that NADH dehydrogenase (ND) genes mutations in FRDA samples were higher than normal controls (P < 0.001) and we found statistically significant inverse correlation (r = -0.8) between number of mutation in ND genes and age of onset in FRDA patients. It is possible that mutations in ND genes could constitute a predisposing factor which in combination with environmental risk factors affects age of onset and disease progression.
- Published
- 2009
- Full Text
- View/download PDF