1. An atlas of GPCRs in dopamine neurons: Identification of the free fatty acid receptor 4 as a regulator of food and water intake.
- Author
-
Apuschkin M, Burm HB, Schmidt JH, Skov LJ, Andersen RC, Bowin CF, Støier JF, Jensen KL, Posselt LP, Dmytriyeva O, Sørensen AT, Egerod KL, Holst B, Rickhag M, Schwartz TW, and Gether U
- Subjects
- Animals, Mice, Eating, Drinking, Mice, Inbred C57BL, Male, Mesencephalon metabolism, Receptors, G-Protein-Coupled metabolism, Receptors, G-Protein-Coupled genetics, Dopaminergic Neurons metabolism
- Abstract
Midbrain dopaminergic neurons (DANs) are subject to extensive metabotropic regulation, but the repertoire of G protein-coupled receptors (GPCRs) present in these neurons has not been mapped. Here, we isolate DANs from Dat-eGFP mice to generate a GPCR atlas by unbiased qPCR array expression analysis of 377 GPCRs. Combined with data mining of scRNA-seq databases, we identify multiple receptors in DAN subpopulations with 38 of these receptors representing the majority of transcripts. We identify 41 receptors expressed in midbrain DANs but not in non-DAN midbrain cells, including the free fatty acid receptor 4 (FFAR4). Functional expression of FFAR4 is validated by ex vivo Ca
2+ imaging, and in vivo experiments support that FFAR4 negatively regulates food and water intake and bodyweight. In addition to providing a critical framework for understanding metabotropic DAN regulation, our data suggest fatty acid sensing by FFAR4 as a mechanism linking high-energy intake to the dopamine-reward pathway., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF