1. Resistance to mesenchymal reprogramming sustains clonal propagation in metastatic breast cancer.
- Author
-
Saini M, Schmidleitner L, Moreno HD, Donato E, Falcone M, Bartsch JM, Klein C, Vogel V, Würth R, Pfarr N, Espinet E, Lehmann M, Königshoff M, Reitberger M, Haas S, Graf E, Schwarzmayr T, Strom TM, Spaich S, Sütterlin M, Schneeweiss A, Weichert W, Schotta G, Reichert M, Aceto N, Sprick MR, Trumpp A, and Scheel CH
- Subjects
- Humans, Female, Epithelial Cell Adhesion Molecule, Cell Line, Tumor, Breast metabolism, Clone Cells metabolism, Epithelial-Mesenchymal Transition, Breast Neoplasms pathology
- Abstract
The acquisition of mesenchymal traits is considered a hallmark of breast cancer progression. However, the functional relevance of epithelial-to-mesenchymal transition (EMT) remains controversial and context dependent. Here, we isolate epithelial and mesenchymal populations from human breast cancer metastatic biopsies and assess their functional potential in vivo. Strikingly, progressively decreasing epithelial cell adhesion molecule (EPCAM) levels correlate with declining disease propagation. Mechanistically, we find that persistent EPCAM expression marks epithelial clones that resist EMT induction and propagate competitively. In contrast, loss of EPCAM defines clones arrested in a mesenchymal state, with concomitant suppression of tumorigenicity and metastatic potential. This dichotomy results from distinct clonal trajectories impacting global epigenetic programs that are determined by the interplay between human ZEB1 and its target GRHL2. Collectively, our results indicate that susceptibility to irreversible EMT restrains clonal propagation, whereas resistance to mesenchymal reprogramming sustains disease spread in multiple models of human metastatic breast cancer, including patient-derived cells in vivo., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF