1. Investigation of supercritical pressure hydrocarbon fuel heat transfer performance in rotating wing shape channels with different wing structural parameters
- Author
-
Mengqiang Dong and Hongyan Huang
- Subjects
Wing shape channel ,Hydrocarbon fuel ,Wing base position ,Thermal performance ,Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
This paper details and develops novel wing shape hydrocarbon fuel cooling channel for enhancing the heat transfer capability of hypersonic vehicle electricity supply blades under rotating conditions. The effect of parameters such as wing base position and height on the thermal performance in the rotating situation is studied. The calculation results show that the wing base height H = 0.6D-0.8D wing shape channels have generally higher thermal performance and generally lower friction coefficient. Thermal performance of the channel with wing base parameters L = 10 D, H = 0.6 D is maximally increased by 350.2 % and friction coefficient is maximally reduced by 98.5 % compared with the straight channel at inlet temperature of 590 K and rotational speed of 35,000 rpm. As the wing base position L increases, both the thermal performance and the friction coefficient increase and then decrease under the influence of the pressure difference. Under the condition of high rotational speed, the wing base height H = 0.8 D and H = 0.6 D wing shape channels will obtain the maximum value of thermal performance in the range of L = 2 D-4 D and L = 6 D-10 D of the wing base position, respectively.
- Published
- 2024
- Full Text
- View/download PDF